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Drought propagation mechanism: the role of natural and human factors
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Selected study watersheds in the Contiguous United States (CONUS) with
various climate and watershed properties



Regional climate characteristics — relation between P and PET
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Factors affecting storage-discharge relationships
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Interaction of watershed and climate properties: impact on hydrologic drought
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Hydrologic drought results
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Water supply system characteristics
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Water supply deficits
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Modelling scenarios to explore the conjunctive use of surface and
groundwater:

BAU Current use of surface and groundwater

Surface water is used for water supply, and groundwater

Smax-G scenario . . :
is used only when surface water is not available

Smax-NG scenario Only surface water is used, and groundwater pumping is not allowed



Effect of surface and groundwater use

Water supply deficits

(a) Current scenario (b) Difference between Smax-G and current scenario
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Example from Western US: San Joaquin

Water Supply Storage
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Water supply deficits are lower when both surface and groundwater are used



Example from Great Plains: Red Headwaters
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Water supply deficits are lower when only surface water is used




Implications

 In WUS watersheds: the groundwater use in these watersheds is not confined to the
drought periods and is also being used to meet water demands in normal or wet years,
leading to depletion of groundwater storage for drought

o Effective conjunctive surface and groundwater use also requires an institutional structure- Groundwater
Management Act was passed in 2014 in Californian, which emphasizes on recognizing the connection
between surface and groundwater resources (Owen et al. , 2019).

* In CUS, especially the Great Plains, the first need 1s to bring down the
unstainable water use amount; the second is to make groundwater as a
reserved resource for baseflow during drought events

* In EUS watersheds, several metropolitan cities lack access to groundwater;
there 1s a need for expansion of storage capacity.



Conclusions

* Aregional approach within the geo-context

* Drought propagation mechanisms based on
natural and human factors

* The role of groundwater for drought
preparedness



Contrasting water supply systems in southwest and southeast US
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Vulnerability of water supply droughts in southeast US

« Increased drought frequency since 1980s « Several metropolitan cities in the region lack
access to groundwater
 Increasing municipal and thermoelectric power
water demands; the region has the fastest
population growth rate in the US

« Capacity expansion may be required to
mitigate water supply droughts in the future

Apurv & Cai. 2020, Earth Future



Factors affecting storage-discharge relationships

(a) Aridity index
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Climate and watershed properties of the selected

watersheds

(b) Phase index

(d) Discharge sensitivity to stofage

While the watersheds in the WUS have a winter
dominated precipitation regime, those in the CUS receive
most precipitation in summer (Fig b).

The seasonality of precipitation is high in the CUS
watersheds and low in the EUS (Fig c).

The EUS watersheds have the strongest sensitivity of
discharge with respect to deep-layer storage, followed by
the WUS, and CUS (the Great Plains) very low sensitivity
in the deep-layer storage (Fig d).

Baseline index is highest in the EUS and lowest in the
Great Plains watersheds (Fig e).

Snowmelt plays an important role in the recharge
generation in the watersheds of the Rocky Mountain
region, Great Lakes region and in the northeast US (Fig f).



Water supply deficit assessment — an integrated hydrologic-infrastructure
model

Water
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Schematic diagram of the water supply system model. VIC model is used for
estimating surface runoff and recharge, which are used as inflows for the
reservoir and recharges to groundwater, respectively. The surface and
groundwater storages are connected through baseflow, which is modelled as a
function of groundwater storage using a regression model.



