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1 Background: global carbon emissions

In 2022, global CO, emissions from fossil fuel combustion and cement
production reached 36.1 * 0.3 billion tons.

Power accounted for 39.3% of the CO, emissions total, industry 28.9%, ground
transportation 17.9%, residential 9.9%, and others 10%.
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1 Background: clean energy development

e China proposed Carbon Peaking and Carbon Neutrality goals in 2020, namely,
achieving peak carbon before 2030 and carbon neutrality in 2060.

e To achieve the carbon neutrality goal, a new power system dominated by clean
energy (e.g., hydro, solar, and wind) should be constructed.

Electricity capacity trend (2011-2021) Installed capacity of different power
sources in China (2021)
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1 Background: Hybrid generation system (HGS)

e However, high penetration of renewables may lead to high risk of electricity
curtailment rate and low power supply reliability for the power system.

e Taking advantage of the flexible hydropower and complementary aspects of

the resources, complementary management of wind, solar and hydropower is
an effective way to improve the energy use efficiency.

Power output fluctuation Hydro-based hybrid generation system
oo - LCHES
= Sunny S :
soo L Cloudy ‘(':ilscade hydropower stations
Ruiny ' Water flow
700 - Snowy _—*}‘\ ~
Pumping I o '
G |- umping ' HE
& station ‘;" - = \ i: 3£
E 00 : Storing electricity of power grid
= 2 gt ; X
< : . mi during valley-electricity-price periods
E i | ' ..................................................................... PR [ Sl BOSCD = S - FCLERE TR R R 2
3 ] ¥ Storing excess electricity of the Control Electricity :
o ol hybrid energy system Center injected o S
iR into power : :
y : = 15000 4 S .
A [\ £10000 4 /- N
100 - / iy. é 5Illi(i<' e § E
(e g SR
o SN PV plant Wind farm 0 24
06:00 07:00 03:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time Hydro-wind-solar clean energy base (HWSCEB) Power grid

[by Ma et al., 2019, Applied Energy] [by Zhang et al., 2022, Energy]



1 Background: Capacity configuration of the HGS

Capacity configuration of the HGS plays a critical role in increasing the
synergy between different power sources.

The capacity configuration process itself relies on system operation
simulation during the techno-economic analysis.

However, accurately simulating the operation of the HGS over their
lifespan is challenging due to following reasons:

(1) Coordinate multiple objectives covering different
timeframes, such as long-term water management
and short-term renewable accommodation.

(2) Solve complex nonlinear optimization model with
millions of decision variables.
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2 Techno-economic analysis framework

A two-stage sizing framework based on techno-economic analysis
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2 Techno-economic analysis framework

Technical evaluation

Daily generation plan of the HGS
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2 Techno-economic analysis framework

Economic evaluation

e The cost-benefit framework includes two economic indicators: Net Present Value
and Pay-back period
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3 Long- and short -term nested operation model

Short-term operation model: unit generation plan
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3 Long- and short -term nested operation model

Short-term operation model: solution process

Parameters of the unit generation plan Flowchart of the short-term optimal operation
process
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3 Long- and short -term nested operation model

Response functions

Steady assumption of long-term operation

Steady assumption may lead to
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3 Long- and short -term nested operation model

Long-term operation model

® Conventional operating rules without incorporating PV and wind forecasts
may lead to suboptimal operation results of the HGS.
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4 Case study

Zhongyu hydro—PV HGS
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5 Results and discussion

Short-term operation results

Daily operation results in six typical scenarios
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5 Results and discussion

Technical evaluation results

Technical evaluation indicators in all PV size
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5 Results and discussion

Multidimensional response functions
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5 Results and discussion

Long-term operation results

e As PV ssize increased, the PV power generation and total power generation
exhibited a significant rise. Conversely, hydropower generation decreased.

e Notably, power generation efficiency of the HGSs declined due to the higher
PV curtailment rate and hydropower loss rate associated with larger PV size.

Energy production in all PV size
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5 Results and discussion

Economic evaluation indicators

¢ Maximum NPV was achieved when the PV size reached 1950 MW with 16.5
years PBP.

e Beyond this threshold, NPV decreases due to the increase in hydropower loss
rate and electricity curtailment rate associated with larger PV sizes.
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5 Results and discussion

Sensitivity analysis

e NPV for all PV sizes increased with increasing PV price, and the larger the PV
size, the more sensitive the NPV was to changes in PV price.

e PV initial investment increased from 4.5 to 6.5 X 10° CNY/MW or decreased
to 2.5 X 10° CNY/ MW, the NPV for the optimal PV size decreased by 256.0%
and increased by 255.6%, respectively.

Sensitivity analysis of NPV to PV electricity
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5 Results and discussion

Sensitivity analysis

e The sensitivity analysis not only illustrate the impact of changes in PV price and
initial investment on the optimal PV size, but also help stakeholders to identify a
feasible region that contains various economic parameter combinations.

Sensitivity analysis of optimal PV size to economic parameters
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6 Summary

A long- and short-term nested operation model was constructed
to accurately simulate the lifetime-span operation of the HGS
with high temporal resolution.

A holistic techno-economic framework for sizing the HGS was
established to consider both technical performance (such as
electricity curtailment, hydropower loss, and peak-shaving) and
economic performance over a lifetime span.

The proposed framework was effective to determine the size of
the renewable power plant within a HGS, and it can be extended
to a larger system that contains multi-reservoirs and various
renewable power plants.
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