Crop switching: A viable solution for water savings and environmental sustainability in China

Tariq Ali

Jiangxi Agricultural University

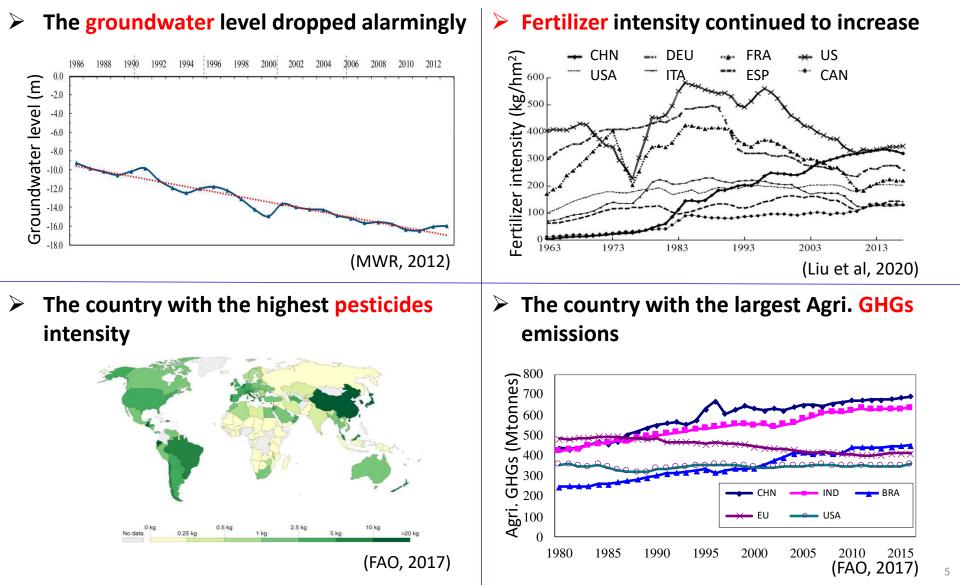
XVIII World Water Congress, Beijing September 14, 2023

Co-authors

Wei Xie^{1*}, Anfeng Zhu¹, Tariq Ali², Zhengtao Zhang³, Xiaoguang Chen⁴, Feng Wu⁵, Kyle Frankel Davis^{6,7*}

- ¹China Center for Agricultural Policy, School of Advanced Agricultural Sciences, Peking University, Beijing, China
- ²School of Economics and Management, Jiangxi Agricultural University, Nanchang, China
- ³Faculty of Geographical Science, Beijing Normal University, Beijing, China
- ⁴Research Institute of Economics and Management, Southwestern University of Finance and Economics, Chengdu, 610074, China
- ⁵Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- ⁶Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
- $^7\mathrm{Department}$ of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA _2

Outline


- Background
- Methods
- Results

China has made great achievements in ensuring food security

- **Population:** 1.375 billion
 - \approx 20% world population
- Water availability: ≈ 5% of world total
- Arable land: ≈ 8% of world total
- Food self-sufficiency: ≈ 95% in 2019

(28.2%, 17.6%, and 22.9% of global rice, wheat, and maize)

Agricultural expansion was at the expense of sustainable development

Sustainable farm management solutions

- China: "high-standard farmland" to improve agriculture productivity while reducing input use, implementing "water-saving projects" to improve water use efficiency etc.
- These <u>solutions</u> assume that crops are already grown in the locations where they are most agro-climatically suited and most resource-efficient.
- There is <u>little understanding</u> of whether the current distribution of crops is best for achieving more sustainable agricultural systems in China.
- Global: studies show reduced irrigation (i.e., blue) water demand and blue water scarcity, protect the natural environment and biodiversity

Crop switching is a promising strategy to complement other sustainable farm management solutions

- India: replacing rice areas with alternative cereals (e.g., millets and sorghum) enhances dietary nutrient supply, reduces natural resource use and GHG emissions, and improves climate resilience without compromising calorie supply or expanding cropland (Davis et al., 2018).
- USA: crop switching can reduce blue water demand (Davis et al., 2017) and climate-related crop losses (Rising et al., 2020).
- •Crop switching is a promising strategy, in China, previous policies have mainly depended on qualitative analyses.

Outline

- Background
- Methods
- Results

Crop switching is a promising strategy to complement other sustainable farm management solutions

We construct a linear optimization model to simulate the contribution of crop switching to sustainable agricultural development and assess tradeoffs and co-benefits across multiple dimensions.

Constraints:

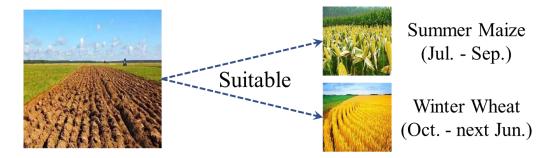
- 1) national supply of all crops cannot decrease—a constraint reflecting national self-sufficiency targets
- 2) farmer incomes within each grid cell cannot decrease
- 3) only crops currently grown within a grid cell can be planted there
- 4) arable land and harvested area within each grid cell are kept as current levels
- 5) cropping calendars of rotating crops cannot overlap in time.

Agricultural BIG Data

✓ Irrigated and Rainfed Crops (13*2):

Wheat (Spring Wheat, Winter Wheat), Rice (Early-Rice, Mid-Rice, Late-Rice), Maize (Spring Maize, Summer Maize), Soybean, Rapeseed, Groundnut, Cotton, Sugar Beet, Sugar Cane. (~94% crop production; ~88% of harvested land)

✓ Multi-source Data (5 arc minute; 1/12°; ~10-km resolution)


- 1. Crop-specific information of irrigated/rainfed yields and harvested area in 2010 (grid level), SPAM database (v 1.2).
- 2. Crop-specific blue and green water intensity (grid level), Crop-Water Demand model.
- 3. Crop-specific GHGs emissions intensity (grid level), DNDC model.
- 4. Crop-specific fertilizers intensity (Nitrogen, Phosphorous, Potash and Compound fertilizer), pesticides intensity and farmer incomes (provincial level), Agricultural costs and profits statistical yearbook.
- 5. Growing season of crops (778 stations in China), China meteorological data service center.

Regions divided by agro-ecological zones (AEZ)

Region	Administrative areas included		70° E 80° E 90° E 100° E 110° E 120° E 130° E 140° E					
North China	Beijing, Tianjin, South central Hebei, Henan, Shandong, Northern Anhui, Northern Jiangsu	50° N						
Northeast Plain	Liaoning ,Jilin, Heilongjiang, Eastern Inner Mongolia	Z	Northeast Plain					
The Yangtze River Plair	Jiangxi, Shanghai, Zhejiang, South central Anhui, South central Jiangsu, Most of Hubei, Most of Hunan	40°	Northweat Region					
Southern China	Fujian, Guangdong, Hainan		North China					
Southwest Region	Guangxi, Chongqing, Guizhou, Southern Shaanxi, Eastern Sichuan, Most of Yunnan, Western Hubei, Western Hunan	30° N	Tibet Region The Yangtze River Plain					
Northwest Region	Xinjiang, Ningxia, North central Shaanxi, Most of Gansu, Shanxi, West central Inner Mongolia, Northern Hebei	20° N	Southwest Region Southern China					
Tibet Region	Tibet, Qinghai, Western Sichuan, Northwest Yunnan		1:30,000,000 0 720 0 I					

Crop Rotations

- ▶ Rice: South (2-3 seasons per year) \rightarrow Northeast (1 season per year)
- The 72,000 grid points were divided into 7 regions, and 1,352 crop rotation patterns were constructed based on crop growing season data (planting times do not conflict). 153 crop rotation patterns were further selected through expert judgment and field surveys.

		Number of cropping rotations					
Region	Number of grids	1 crop per year	2 crops per year	3 crops per 2 years	5 crops per 3 years	Total	
Northeast	11698	10	0	0	0	10	
North	6314	13	3	4	0	20	
Yangtze	9769	13	1	9	0	23	
South	4193	13	14	6	14	47	
Northwest	19122	11	1	0	0	12	
Southwest	17255	13	4	11	0	28	
Tibet	3649	13	0	0	0	13	
Total	72000	86	23	30	14	153	

12

Rotation Examples

Region	Crop 1	Crop 2	Crop 3	Crop 4	Crop 5	Rotation
North	Winter Wheat					1 crop per year
North	Summer Maize					1 crop per year
North	Winter Wheat	Summer Maize				2 crops per year
North	Winter Wheat	Soybean				2 crops per year
North	Winter Wheat	Summer Maize	Soybean			3 crops per 2 years
North	Winter Wheat	Rapeseed	Soybean			3 crops per 2 years
North	Summer Maize	Rapeseed	Soybean			3 crops per 2 years
North	Winter Wheat	Summer Maize	Rapeseed	Soybean	Groundnut	5 crops per 3 years
North	Winter Wheat	Summer Maize	Winter Wheat	Summer Maize	Rapeseed	5 crops per 3 years
North	Winter Wheat	Soybean	Groundnut	Rapeseed	Soybean	5 crops per 3 years

Method: Large Liner Optimization Model

Min/Max SDG_{Dim} (minimize national use of blue water or other 7 sustainable dimensions, or maximize national farmer income)

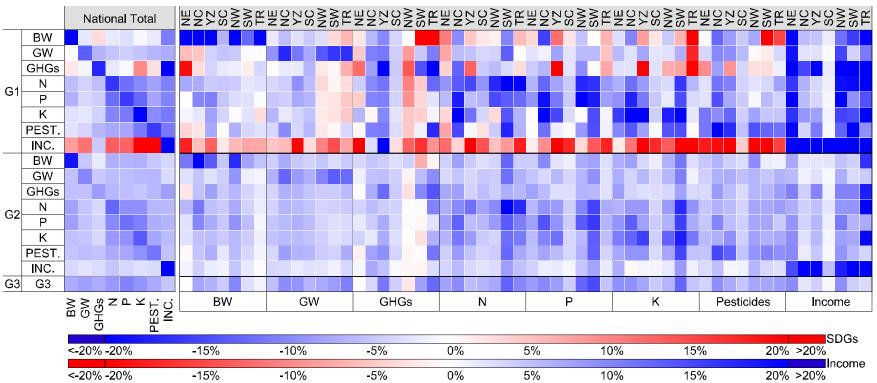
s.t. (More than 1.5 million constraints):

$$\begin{split} & \sum_{i,j} CA_{irr,i} * x_{i,j} * R_{j,z} * YLD_{irr,i,z} \ge P_{Cur,irr,z} & (1) \text{ Production (national level)} \\ & \sum_{j,z} CA_{irr,i} * x_{i,j} * R_{j,z} * YLD_{irr,i,z} * UI_{INC,i,z} \ge TFI_{Cur,irr,i} & (2) \text{ Farmer's income (grid level)} \\ & \sum_{j} x_{i,j} \le 1 & (3) \text{ Cultivated Area (grid level)} \\ & \sum_{j} CA_{irr,i} * x_{i,j} * R_{j,z} = CA_{Cur,irr,i} & (4) \text{ Harvested Area (grid level)} \\ & \sum_{j,z} CA_{irr,i} * x_{i,j} * R_{j,z} * UI_{Dim,i,z} \le \begin{cases} CURRENT_{Dim,irr,i} | (Ind_{Dim,i} \ge BD_{Dim,i}) \\ UPBOUND_{Dim,irr,i} | (Ind_{Dim,i} < BD_{Dim,i}) \\ UPBOUND_{Dim,irr,i} | (Ind_{Dim,i} < BD_{Dim,i}) \end{cases} & (5) \text{ SDG (grid level)} \\ & SDG_{Dim} = \sum_{i,j,z} CA_{irr,i} * x_{i,j} * R_{j,z} * UI_{Dim,i,z} & (6) \text{ Optimization Object} \end{split}$$

 SDG_{Dim} = total national use of Dim; Dim = nine agricultural sustainable dimensions; $CA_{irr,i}$ = cultivated area of irrigated croplands in grid *i* $x_{irr,i,j}$ = proportion of the cultivated land applying crop rotation *j* in grid *i* $R_{i,r}$ = rotation number that crop *z* is planted per vear in the feasible crop rotation *i* glictice.

 All these optimizations were duplicated on rainfed cropland except minimizing the blue water use scenario, and then we aggregated the results with irrigated optimizations to get the optimization of all lands.

Method: The properties of the scenarios

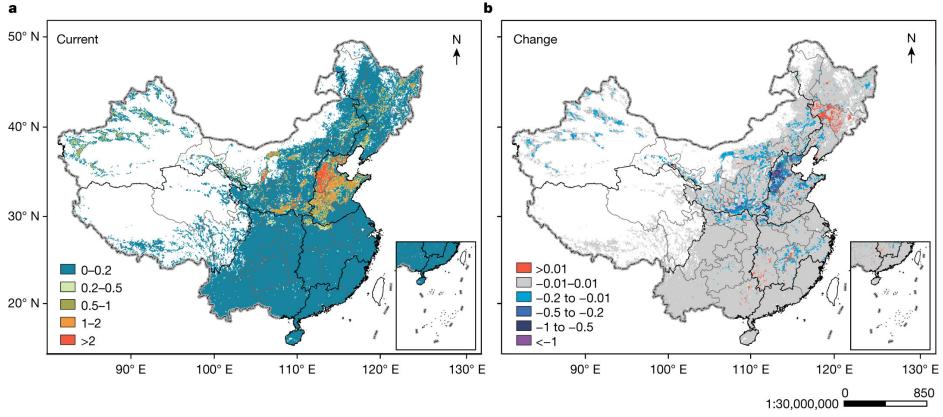

Scenarios *	Sustainability dimensions under study	All other sustainability dimensions	Farmer incomes	Crop production
G1	()ntimized individually	May degrade on both national and grid level	May not	May not
G2	Optimized individually	May not degrade in any grid cell		decrease on national level
G3	All sustainable di			

*G1 (No coordination): Silo-ed approach prioritizing a single sustainability objective at a time; G2 (Cross-ministry coordination): prioritizes one sustainability dimension while not degrading outcomes for any of the other sustainability dimensions at the national level and grid level; G3 (Central coordination): prioritizes that the average improvement of all sustainable dimensions is the largest while the variance among these improvements is the smallest

Outline

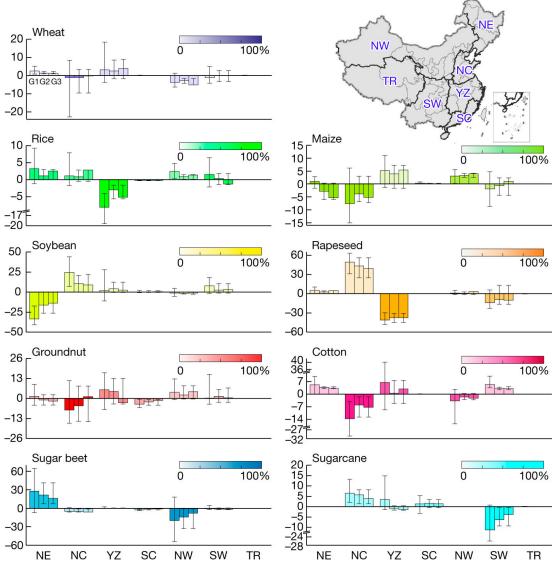
- Background
- Methods
- Results

Changes in resource use, environmental losses, and farmer incomes under crop switching

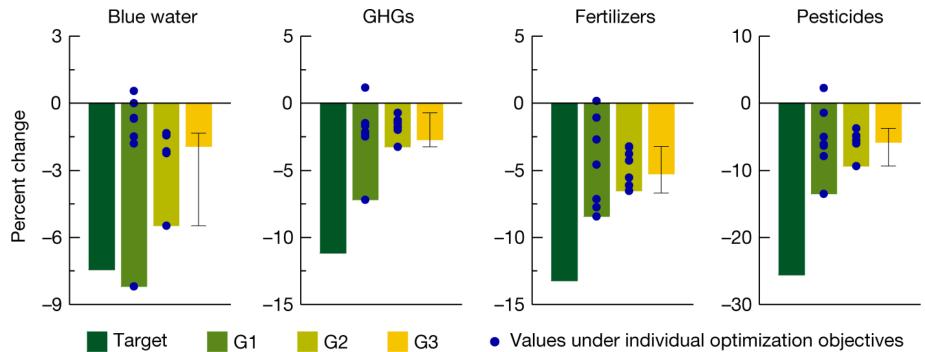


Each row represents a different optimization objective; each column represents the outcome for each sustainability dimension.

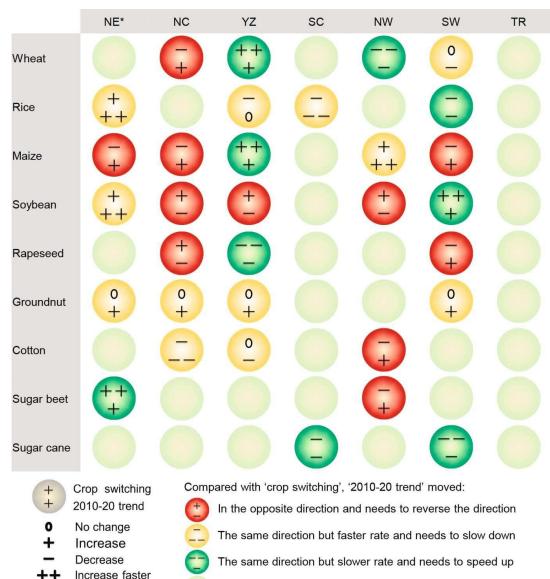
G3:


- Blue Water, -6.5%; Green Water, -7.5%; GHGs, -6.5%;
- Nitrogen fertilizer, -8.1%; Phosphate fertilizer, -9.8%;
- Potassium fertilizer, -8.3%; Pesticides, -6.7%; Farmers' income, +4.5%

Reductions in blue water scarcity through optimized crop switching


Changes in the spatial distribution of water scarcity under the optimization scenario (G3) that simultaneously saves resources, reduces environmental losses and increases farmer incomes. **a**, Ratio of current blue-water use to water availability (that is, water scarcity). **b**, Changes in blue-water scarcity after crop switching.

Changes in the spatial distribution of resource use and environmental losses


The **y-axis** indicates the percentage point differences between the shares (%) in the national production of a specific crop in each region before and after crop switching. In each group of three bars, the left, middle, and right bars are the average change of regional crop-production share under G1 (eight scenarios), G2 (eight scenarios), and G3 (one scenario), respectively. The whiskers indicate the minimum and maximum of all changes; the whiskers for G3 bars represent the range of Pareto-optimal outcomes. The color scale of the bars corresponds to the share of current crop production of each region to the national total; for instance, the darker shades of the bars for wheat in the North China Plain (NC) and rice in the Yangtze River Plain (YZ) indicate that these regions account for large shares in the total national production of those crops. The map in the top-right corner shows the distribution of the seven regions of China:

Contribution to official agricultural sustainability targets in 2030

The **dark green bars ('Target')** show the difference between the baseline projection and China's official agricultural sustainability targets in 2030. Under the baseline, the projection of blue water is based on existing literature. As the projections of other sustainable dimensions for China were unavailable in the literature, we multiplied projected crop production in 2030 and current resource-use intensities to estimate their baseline projections. The **other three bars** represent the crop-switching benefits of the G1, G2, and G3 scenarios. The **blue points** represent the crop-switching benefits/costs of individual optimization objectives. The **whiskers for the G3** bars represent the range of Pareto-optimal outcomes.

Trend agreement between proposed and recently observed changes in cropping patterns

Accounts for a small fraction of the national total

Decrease faster

Circle colors denote whether compared with our proposed crop switching (G3)—the observed distribution change of the crop in that region during the past ten years has moved in the opposite direction and needs to reverse the direction (red), the same direction but faster rate and needs to slow down (yellow) or the same direction and the same/slower rate and needs to speed up (green). Faded circles indicate that a crop in that region accounts for a small fraction of the national production. The top signs (+, –, 0) inside each circle represent how the sowing area of the crop is proposed to change under our crop-switching scenarios, whereas the **bottom signs (+, –, 0)** show recent crop distribution changes during 2010–2020.

Concluding remarks

- Under a siloed approach, crop switching could realize large individual benefits but produce tradeoffs for other dimensions and among different regions.
- In cases of enhanced coordination –in which tradeoffs are prevented— we find marked co-benefits for environmental-impact reductions (blue water (-4.5% to -18.5%), green water (-4.4% to -9.5%), greenhouse gases (GHGs) (-1.7% to -7.7%), fertilizers (-5.2% to -10.9%), pesticides (-4.3% to -10.8%)) and increased farmer incomes (+2.9% to +7.5%).
- Outcomes of coordinated crop switching can contribute significantly (23% to 40% across dimensions) to meeting China's agricultural sustainable development targets for 2030 and potentially produce global resource savings.
- Our integrated approach offers feasible targeted agricultural interventions that achieve sustainability co-benefits across several dimensions.

Thank You! Email: agri45@gmail.com

Article

Crop switching can enhance environmental sustainability and farmer incomes in China

https://doi.org/10.1038/s41586-023-05799-x	Wei Xie ^{1,8} ⊠, Anfeng Zhu ^{1,8} , Tariq Ali ^{2,8} , Zhengtao Zhang³, Xiaoguang Chen ^{4⊠} , Feng Wu ^{5⊠} , Jikun Huang¹ & Kyle Frankel Davis ^{6,7⊠}			
Received: 15 December 2021				
Accepted: 6 February 2023				
Published online: 16 March 2023	Achieving food-system sustainability is a multidimensional challenge. In China, a doubling of crop production since 1990 has compromised other dimensions of sustainability ^{1.2} . Although the country is promoting various interventions to enhance			
Check for updates				

¹China Center for Agricultural Policy, School of Advanced Agricultural Sciences, Peking University, Beijing, China. ²School of Economics and Management, Jiangxi Agricultural University, Nanchang, China. ³School of National Safety and Emergency Management, Beijing Normal University, Beijing, China. ⁴Research Institute of Economics and Management, Southwestern University of Finance and Economics, Chengdu, China. ⁵Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China. ⁶Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA. ⁷Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA. ⁸These authors contributed equally: Wei Xie, Anfeng Zhu, Tariq Ali. ^{Se}-mail: xiewei.ccap@pku.edu.cn; cxg@swufe.edu.cn; wufeng@igsnrr.ac.cn; kfdavis@udel.edu

300 | Nature | Vol 616 | 13 April 2023

https://www.nature.com/articles/s41586-023-05799-x