

Rainfall-Infiltration in Growing and Non-growing Seasons on the Loess Plateau

Ruoxuan Li Sichuan University

Content

- Part 1 : Introduction
- Part 2 : Study site and Data
- Part 3 : Methods
- Part 4: Results
- Part 5 : Conclusions

INTRODUCTION

Rainfall-infiltration mechanism on the Loess Plateau have changed dramatically.

In the growing season and non-growing season:

- 1. How does soil moisture respond differently to rainfall?
- 2. What are the differences in soil moisture infiltration pathways?
- 3. How soil moisture storage varies?

2 STUDY SITE & DATA

NanXiaohegou cachment, Qingyang City, Gansu Province

- Grassland (1.15km²): natural recovery of vegetation (Figure c)
- Forestland (0.87km²): artificial reforestation (Figure d)
- Soil moisture monitoring: uphill and downhill, 5 soil depths (10, 20, 40, 60, 100cm)
- Rainfall monitoring: automatic weather station
- **Data:** 2016.5-2018.12 at 10-minute intervals

4 RESULTS: Environmental factors

	Growing season	Non-growing season	Mann-Whitney U
NDVI	0.28	0.16	P<0.001*
Temperature (°C)	18.54	3.43	P<0.001*
Duration (hr)	43.57	29.78	P<0.001*
Total amounts (mm)	34.71	12.14	P<0.001*
Peak intensity (mm/hr)	16.33	8.40	P<0.001*
Average intensity (mm/hr)	5.44	5.95	P>0.001

Significant difference in environmental variables between growing and non-growing season.

4 RESULTS: Wetting Depth

Compared with non-growing season:

- More response events in growing season
- Deeper wetting depths in the growing season

Deeper wetting depth:

- Higher Peak intensity
- More rainfall amounts
- Lower AMC (antecedent moisture conditions)

4 RESULTS: Wetting Front Velocity

Compared with non-growing season:

 Faster wetting front velocity in growing season

Faster wetting front velocity:

- Higher Peak intensity
- More rainfall amounts
- Lower AMC (antecedent moisture conditions)

4 RESULTS: Preferential Flow

Compared with non-growing season:

 More preferential flow events in growing season

Faster wetting front velocity:

- Higher Peak intensity
- More rainfall amounts

4 RESULTS: Soil Water Storage

Growing soil water storage is greater than non-growing season.

- Growing season: Deeper wetting depth; Faster wetting front velocity; More preferential flow events
- Non-growing season: Lower soil moisture depletion

5 CONCLUSIONS

Growing season

Non-growing season

Soil moisture replenishment

- Higher Peak intensity
- More rainfall amounts

- More response events
- Deeper wetting depth;
- Faster wetting front velocity;
 - More preferential flow

Lower Peak intensity

Less rainfall amounts

- Less response events
- Shallower wetting depth;

Soil moisture depletion

More evaporation

Less evaporation

Soil water storage

More SWS

Less SWS

THANK YOU

Li Ruoxuan Sichuan University

WORLD WATER
CONGRESS Water for All
Harmony between
Humans and Nature

第18届 世界水资源大会

水与万物: 人与白紫和维女件