

## **Evolutionary response and countermeasures of typical urbanization rainstorm in Yunnan**

#### Dongsheng WANG

Yunnan Provincial Bureau of Hydrology and Water Resources





# Content

- Background/形势和背景
- Data and methods/数据和方法
- Main conclusions/主要结论
- Coping strategies/应对策略



In the context of climate change and urbanization, the recurrent and serious urban storm floods and waterlogging are the current research hotspots, and are also important measures to implement the people-centered idea of disaster prevention and mitigation.



> Climate change Glacier melting, extreme climate, sea level rise, etc, extreme weather events such as rainstorm, flood and drought

> Increase of rainstorm 2012-2016, Rainstorm days increased by 22.5% in china. in China has (China Meteorological News) increased from

> Urbanization The urbanization rate 30.48% in 1996 to 65.22% in 2022.

Frequent urban rainstorm, flood and waterlogging

During the rainy season, we often see reports of urban waterlogging.

## Background/形势和背景



- Yunnan Province is located in southwestern China, The rainy season precipitation is jointly influenced by the southeast monsoon from the Pacific Ocean and the southwest monsoon from the Indian Ocean.
- > 9 typical cities of different scales :

1 provincial capital

6 municipal-level 2 county-level.



| 序号/<br>No | 级别/level              | 城市/City     | Urban built-up<br>area in 1990/km² | Urban built-up area<br>in 2000/km² | Urban built-up area<br>in 2010/km² | Urban built-up area<br>in 2020/km² |
|-----------|-----------------------|-------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 1         | 省级/provincial capital | 昆明/Kunming  | 70                                 | 180                                | 313                                | 446.1                              |
| 2         | 市级/municipal-level    | 麒麟/Qiling   | 12                                 | 23.5                               | 64.3                               | 109.5                              |
| 3         |                       | 楚雄/chuxiong | 6.5                                | 12.7                               | 25.9                               | 63.7                               |
| 4         |                       | 文山/Wenshan  | 9.8                                | 15.9                               | 31.2                               | 46.1                               |
| 5         |                       | 临翔/Linxiang | 0.5                                | 1                                  | 15.3                               | 20                                 |
| 6         |                       | 景洪/Jinhong  | 10.6                               | 13.9                               | 23                                 | 37.8                               |
| 7         |                       | 芒市/Mangshi  | 3.7                                | 8                                  | 17.5                               | 21.1                               |
| 8         | 县级/county-level       | 陆良/Luliang  | _                                  | -                                  | 15.5                               | 18.4                               |
| 9         | 云级/county-rever       | 禄丰Lufeng/   | 2.4                                | 4.9                                | 7.6                                | 9.2                                |

### Data and methods/数据和方法





#### ◆ Data/数据:

- > 17 urban rainfall stations with more than 30 years data;
- 10 min, 1 h, 6 h and 24 h maxima rainstorm of each station over the years.
- > The frequency and time of 1 h, 6 h and 24 h rainstorm in each year .

#### ◆ Methods/方法:

- Trend analysis
- Comprehensive index

- Comparative analysis
- > P-III Hydrological frequency analysis
- Mann-Kendall test

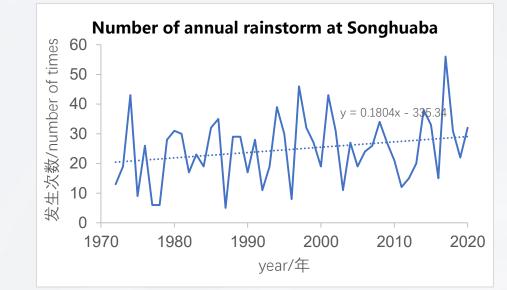
Left are Satellite imagies of Kunming in 1990 and 2020, respectively

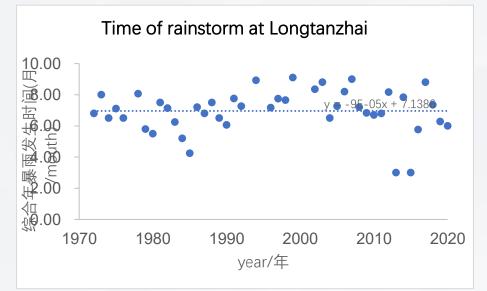


- ◆ 1.Intensity, frequency and seasonal evolution of urban rainstorm/典型城市暴雨强度、次数及季节演变 Kunming, Linxiang, Wenshan, Mangshi, Luliang and Lufeng which have long series data of the same period are selected as representative cities to carry out urban rainstorm evolution analysis.
- The increasing trend of rainstorm intensity in Kunming, Lufeng, Wenshan and Mangshi is more significent.

| Linear trend evolution/线性趋势演变 |          |                           |                     |                  |                  | annual max 6h and 24h rainfall Linear trend of |                                                                                                               |
|-------------------------------|----------|---------------------------|---------------------|------------------|------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Serial<br>Number              | City     | Representative<br>Station | annual<br>max 10min | annual<br>max 1h | annual<br>max 6h | annual<br>max 24h                              | 160<br>140<br>220<br>800<br>100                                                                               |
| 1                             | Kunming  | Songhuaba                 | -0.02               | -0.02            | 0.18             | 0.25                                           | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |
| 2                             | Linxiang | Dawen                     | 0.04                | -0.07            | -0.06            | 0.29                                           |                                                                                                               |
| 3                             | Wenshan  | Longtanzhai               | -0.02               | 0.15             | 0.26             | 0.31                                           | y = 0.1752x - 294.5                                                                                           |
| 4                             | Mangshi  | Mukang                    | -0.02               | 0.05             | 0.15             | -0.25                                          | 0<br>1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020                                                   |
| 5                             | Luliang  | Xiqiao                    | -0.04               | -0.16            | -0.08            | -0.21                                          | 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020<br>year                                                |
| 6                             | Lufeng   | Donghucun                 | 0                   | 0.15             | 0.18             | 0.11                                           | annual max 6h  annual max 24h                                                                                 |

### main conclusions/主要结论





- The frequency of rainstorm in Kunming and Wenshan tends to increase.
- The probability of occurrence in Mangshi and Wenshan during dry season increases.
- The occurrence time of Kunming and Lufeng is more concentrated in June and August.

However, the above trends did not pass the Mann-Kendall test (p=5%).

The calculation formula of average comprehensive occurrence time Y of rainstorm is:

$$Y = (\sum t_i \times n_i) / N$$





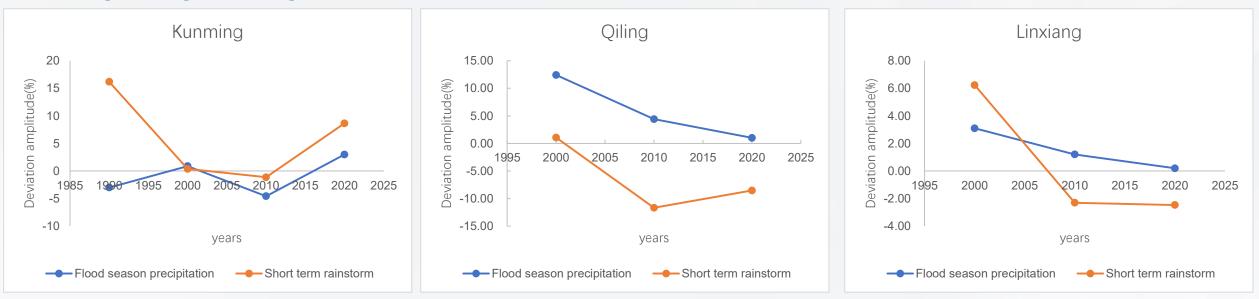


#### ◆ 2.Change of rainstorm center under urban development/城市发展下昆明暴雨中心的变化

With the pace of urban construction, the location of the extreme rainstorm in Kunming experienced the evolution process from north to south to north.



- 1980s, the maximum precipitation of 10min, 1h, 6h and 24h located in the north.
- > 1990s, the maximum annual precipitation of 10 min located in the north ; the maximum precipitation of 1 h, 6 h and 24h located in the south.
- 2000s, the maximum annual precipitation of 10 min、 1h located In the south, other time periods appeared located in other locations.
- 2010s,the maximum annual precipitation of 10min, 1h, 6h and 24h occurs located in the north.




#### ◆ 3.Impact of urban development on rainstorm/城市发展对暴雨影响

Comparative analysis on the evolution trend of urban and suburban representative stations in Kunming, Qilin, Chuxiong, Jinghong, Linxiang and Lufeng with rainstorm data in the same period.

When the built-up area is greater than 40Km<sup>2</sup>, the impact of urbanization on rainstorm begins to appear, and the impact increases with the increase of the city size.

Example:Comparison of short-term and long-term deviation amplitude between representative stations in Kunming\Qiling\Linxiang urban area and suburban areas.



XVIII World Water Congress International Water Resources Association (IWRA)

The rainstorm extreme value in the central urban area of Kunming, which has the most significant impact in 2011-2020, increases by 21-31.8% in different periods on average, and the frequency increases by 15-25%.

This change has no significant impact on the hydrological frequency analysis results of rainstorm P III in different periods at representative stations.

| Station name          | Location                                     | 10min (mm) | 1h (mm) | 6h (mm) | 24h (mm) |
|-----------------------|----------------------------------------------|------------|---------|---------|----------|
| Kunming(from 2003)    | center                                       | 16.7       | 33.6    | 65.6    | 82.6     |
| Songhuaba             | north                                        | 13.7       | 29.7    | 58.1    | 78.9     |
| Haigeng               | south (Comparison station)                   | 12.6       | 27.6    | 50      | 67.8     |
| Zhonghe               | Northern suburbs (Comparison station)        | 13         | 28.6    | 53.6    | 69.4     |
| Dabanqiao             | Eastern suburbs (Comparison station)         | 12.4       | 26.9    | 46.7    | 67.5     |
| Songhuaba station cor | npared to the average of comparison stations | 8.2%       | 7.1%    | 16.0%   | 15.7%    |
| Kunming station com   | pared to the average of comparison stations  | 31.8%      | 21.3%   | 30.9%   | 21.0%    |





## Coping strategies/应对策略









1. Limit the scale of large cities and promote the development of small and medium-sized cities.

- > 2. Improve the design standards of urban flood control and drainage.
- ➤ 3. Take engineering and non-engineering measures to enhance the flood regulation capacity of storm flood in the upper reaches of the city.
- 4. The dry season is dry and the water supply situation is severe. It is suggested to strengthen the resource utilization of urban rainstorm and flood in rainy season.



# **Thanks for attention!**

## Email:116955105@qq.com



第18屆 世界**水资源大会** <sup>35万物:</sup>