

Influence of horizontal curved water conveyance tunnel on hydraulic characteristics of side inlet/outlet

Jing Dong ChangJiang River Scientific Research Institute

第18屆 世界**水资源大会** ^{※5万和}

Content

- Introduction
- Method
- Results
- Conclusions

Pumped-storage power station

· Deviation of flow ratio of each orifice

$$d_{Q} = \left(\frac{Q_{i}}{Q_{total}}\right)_{max} - \left(\frac{Q_{i}}{Q_{total}}\right)_{min}, i = 1, 2, 3, 4$$

· Non-uniformity of flow velocity at trash rack section

$$v_{non-uniformity} = \frac{v_{max}}{\overline{v}}$$

Dean vortices

• Straight section length: L=2.5D, 5.6D, 8.0D

• Tunnel slope: i=7%, 8% l $i = \frac{h}{l}$

Method

Numerical simulation

- two-phase flow model: VOF
- turbulence model: Reynolds Stress
- Mesh number: about 5 million

Model test

• Model scope: planar turning tunnel, Inlet/Outlet, Forbay

Reliability verification

Methods/Parameters	Flow distribution ratio	Non-uniformity of flow velocity (Vmax/Vave)
Numerical simulation	16.37%~34.47%	2.19~2.72
Model test	17.3%~33.11%	1.80~2.13

The numerical simulation results are **basically consistent** with the experimental results.

> The Influence of **planar turning tunnel** on hydraulic characteristics of inlet/outlet water

• Flow distribution ratio of each orifice

L	0-1	O-2	O-3	0-4	Deviation Ratio
2.5D	27.87	31.40	18.74	21.99	12.66
+∞ (straight)	23.25	26.75	26.50	23.50	3.49

• The non-uniformity of the flow velocity distribution at the trash rack

L.	0-1	0-2	O-3	O-4
2.5D	2.88	2.06	1.92	2.68
+∞ (straight)	3.54	2.98	2.96	3.54

- Uneven flow distribution at each orifice
- Lower non-uniformity of flow velocity distribution

- > The effect of **straight section length** (L) downstream of the turning section
 - Flow distribution ratio of each orifice

Results

L	O-1	0-2	O-3	0-4	Deviation Ratio
2.5D	27.87	31.40	18.74	21.99	12.66
5.6D	25.21	23.57	30.10	21.11	8.99
8.0D	24.29	30.56	23.32	21.83	8.74

• The non-uniformity of the flow velocity distribution at the trash rack

L	0-1	0-2	O-3	0-4
2.5D	2.88	2.06	1.92	2.68
5.6D	2.67	2.3	1.94	2.45
8.0D	3.22	2.55	2.89	3.39

- The longer the straight section, the more uniform the flow distribution ratio of each orifice
- The longer the straight section, the non-uniformity of the flow velocity distribution at the trash rack section may not necessarily improve

Influence of Tunnel Slope

• Flow distribution ratio of each orifice

i	0-1	0-2	0-3	0-4	Deiation Ratio
7%	24.29	30.56	23.32	21.83	8.74
8%	24.48	30.38	23.72	21.41	8.97

• the non-uniformity of the flow velocity distribution at the trash rack

i	0-1	0-2	O -3	0-4
7%	3.22	2.55	2.89	3.39
8%	2.98	2.19	2.62	2.55

The larger the slope, the more uniform the flow velocity distribution on the cross-section of the trash rack.

Influence of the location of the slope change

• Flow distribution ratio of each orifice

Changing position	0-1	0-2	O-3	0-4	Deviation Ratio
Circular tunnel	24.48	30.38	23.72	21.41	8.97
transition section	24.31	29.32	25.14	21.23	8.09

• the non-uniformity of the flow velocity distribution at the trash rack

Changing position	0-1	0-2	0-3	O-4
Circular tunnel	2.98	2.19	2.62	2.55
transition section	2.90	2.22	2.43	2.14

- The longer the straight section, the more uniform the fow distribution ratio of each orifice. However, the non-uniformity of flow velocity at trash rack section may not necessarily improve.
- A **larger** the tunnel slope or a **longer** the transition section can lead to a **more uniform** distribution of the flow velocity at trash rack section.
- To adopt a suitable slope changing position can improve both the fow distribution ratio of each orifice and the non-uniformity of flow velocity distribution at trash rack section.

Thank you!

imail: dongjing139@whu.edu.cn

ChangJiang River Scientific Research Institute

^{第18屆} 世界**水资源大会**