
Multi-objective Optimal Operation Cascade Reservoirs Considering Ecological Effects

Chengxuan Lu

Hohai University

Content

- Introduction
- Methodology
- Results and Discussion
- Conclusions

1.Introduction

- Water resources are the natural resources most ! closely related to human life and production.
- Hydropower resources are clean and pollution-

Varieties of benefits of the reservoir

□ Cascade reservoirs will block the natural hydraulic connection of the river when giving full play to the benefits of power generation, flood control, water supply, shipping and so on.

Uses of water resources (Hydropower stations and reservoirs)

Downstream of the hydrological situation changes result in ecological problems (Drought and fish back block)

1.Introduction

The construction of reservoirs

The river become flat

Reservoirs impound water in flood season and replenish water in dry season.

Ecosystem Stability

Hydrological regimes

Indicators of hydrological variability

2.Methodology

■ Indicators of Hydrological Alteration(IHA)

Classificat	tion∈ Indicators∈	<u>Prameters</u> ←	
1←	The average monthly runoff⊖	The average runoff of every month⊲	1-12←
2←	The extreme annually runoff [©]	The maximum and minimum runoff of 1,3,7,30,90 day in one year ←	13-22
		The maximum and minimum runoff of 1,3,7 day in dry season€	23-28
		The maximum and minimum runoff of 1,3,7 day in normal season	29-34
		The maximum and minimum runoff of 1,3,7 day in wet season€	35-40
		Base flow index, Cutoff days□	41-42
3←	The time of the	The time of the maximum annually runoff [□]	43←
	extreme annually runoff⊄	The time of the minimum annually runoff€	44←
4←3	High and low runoff- frequency and duration←	The pulse number of high runoff in one year and their duration time€	45-40
		The pulse number of high runoff in dry season and their duration time€	47-48
		The pulse number of high runoff in normal season and their duration time-	49-50
		The pulse number of high runoff in wet season and their duration time€	51-52
		The pulse number of low runoff in one year and their duration time	53-54
		The pulse number of low runoff in dry season and their duration timed	55-56
		The pulse number of low runoff in normal season and their duration time€	57-58
		The pulse number of low runoff in wet season and their duration time	59-60
5←3	Runoff change rate and frequency⇔	Average runoff reducing rate, average runoff increasing rate, number of flips in one year.	61-63
		Average runoff reducing rate, average runoff increasing rate, number of flips ← in dry season←	64-66
		Average runoff reducing rate, average runoff increasing rate, number of flips in normal season	67-69
		Average runoff reducing rate, average runoff increasing rate, number of flips ← in wet season←	70-72

> Parameter selection

The information entropy Theory

Pearson correlation coefficient

Principal component analysis (PCA)

☐ Hydrological change rate (Ecological goals)

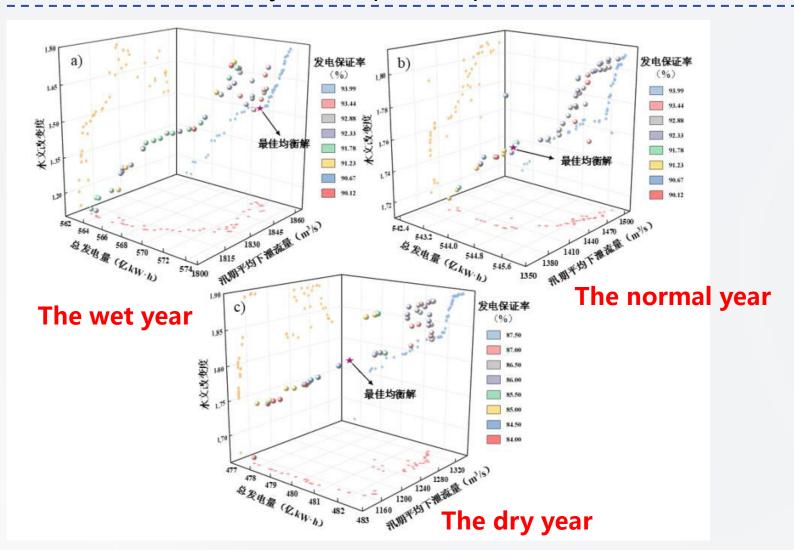
$$\xi_i(Q) = \frac{\left|z_i - \overline{z_i}\right|}{\overline{z_i}}$$

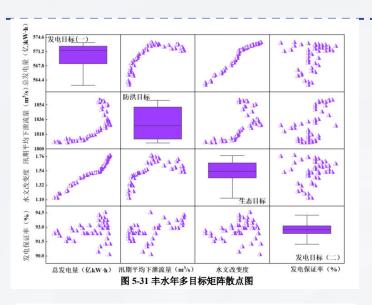
$$\xi_{i}(Q) = \frac{\left|z_{i}^{'} - \overline{z_{i}}\right|}{\overline{z_{i}}}$$

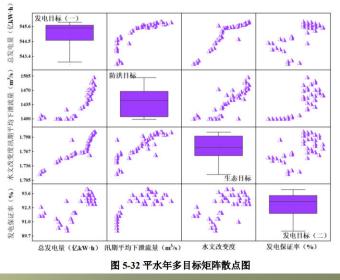
$$\xi(Q) = \sum_{i=1}^{m} \omega_{i} \times \xi_{i}(Q)$$

3. Results and Discussion

■ Analysis of IHA system selected parameters


Table 2. Selected mainly parameters ←						
No.←	weight€	Selected parameters [□]	Contribution←	Corrected · Contribution ←		
1←	0.334€	The maximum and minimum runoff of 90 day in one year	29.34↩	33.38€		
2←	0.192↩	Average runoff reducing rate in dry season←	16.89€	19.21₽		
3↩	0.130←	The minimum runoff of 1 day in normal season ∩	11.43←	13.01←		
4↩	0.122←	average runoff increasing rate in wet season←	10.75↩	12.23₽		
5↩	0.066↩	number of flips in wet season€	5.76₽	6.55₽		
6↩	0.063↩	The time of the maximum annually runoff	5.53₽	6.29₽		
7↩	0.051←	Average runoff reducing rate in one year	4.52←	5.14↩		
8←	0.042←	number of flips in one year⊄	3.68₽	4.19↩		
Sum←	1↩	4	87.91₽	100↩		


Before eight 87.91%


3. Results and Discussion

■ Results of Multi-objective Optimal Operation Cascade Reservoirs

4. Conclusions

> Increase some index system of the traditional IHA can reflect the index of the difference of runoff season for quantitative hydrological change degree of ecological goals.

> IHA can better help us to realize the multi-objective optimization scheduling, and produce a variety of

Thanksl

Chengxuan Lu

Hohai University

