

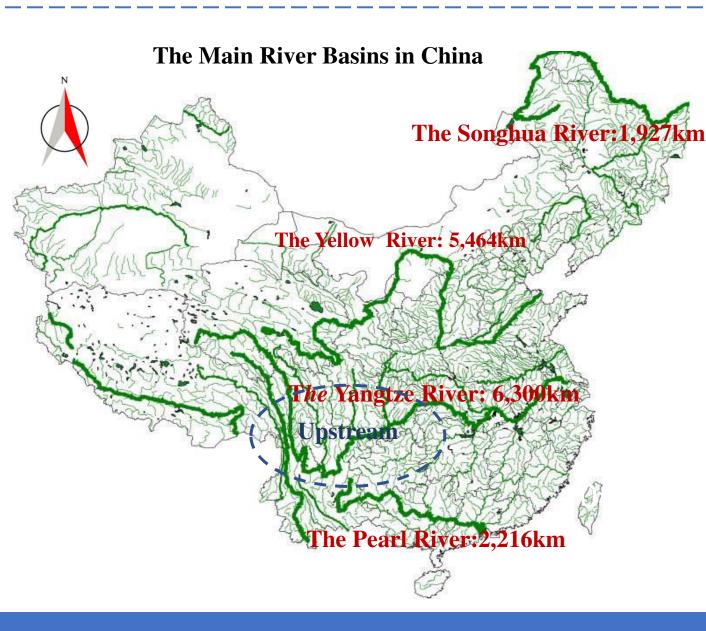
Multi-objective dispatching for the efficient utilization of water resources in TGR

Dr. Yufeng Ren

Senior Engineer, China Yangtze Power Co., Ltd., China

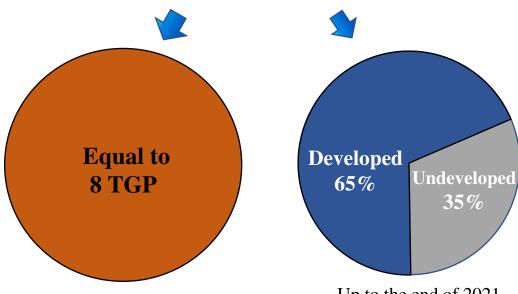
Multi-objective dispatching for the efficient utilization of water resources in TGR

Dr. REN Yufeng September 13th 2023



01 Overview

Hydropower Reserves in Upstream of the Yangtze River in China



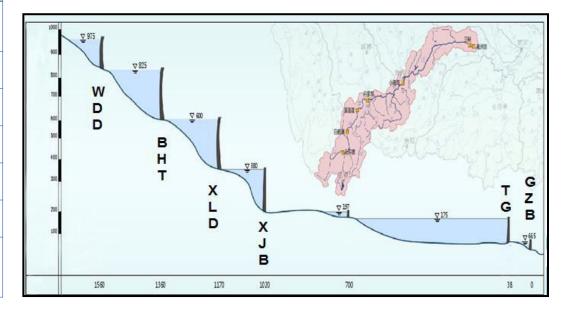
Upstream of the Yangtze River

Technically Exploitable Reserves:

178GW (Top1 in China)

Up to the end of 2021

Up to the end of 2021, the capacity already installed on the upstream of the Yangtze River was 115GW, accounting for 65% of technically exploitable reserve.



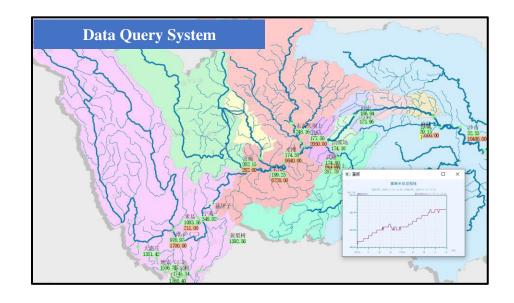
Cascade Hydropower Stations and Reservoirs of CYPC

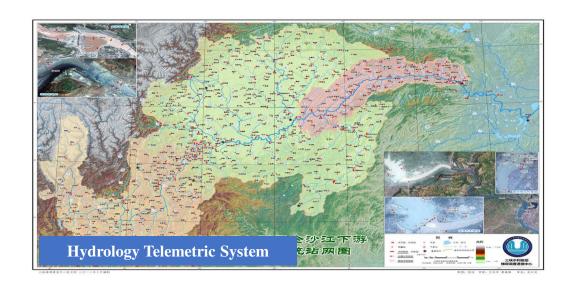
Parameters of Cascade Hydro-Power Stations and Reservoirs

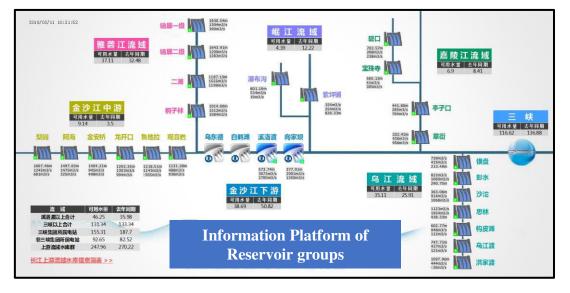
	Hydropower Stations			Reservoirs		
HPS	Units	Installed Capacity (MW)	Average Power Production (MWh)	Normal Water Level (m)	Flood Control Limited Leve(m)	Capacity for Flood (Billion m ³)
WDD	12	10,200	39,260	975	952	2.44
ВНТ	16	16,000	64,100	825	785	7.50
XLD	18	13,860	57,400	600	560	4.65
XJB	8	6,400	30,880	380	370	0.93
TG	34	22,500	88,200	175	145	22.15
GZB	21	2,735	15,700	66	/	/
Total	109	71,695	295,540	/	/	37.67

Cascade Hydropower Stations and Reservoirs of CYPC

02 Key Technology

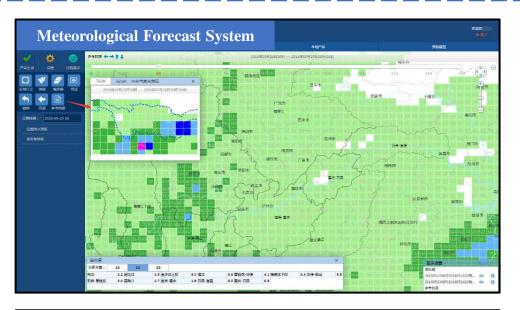


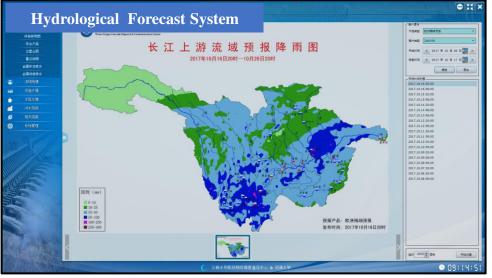

Meteorological and Hydrological Data Monitoring System



Automatic Hydrological Telemetric System

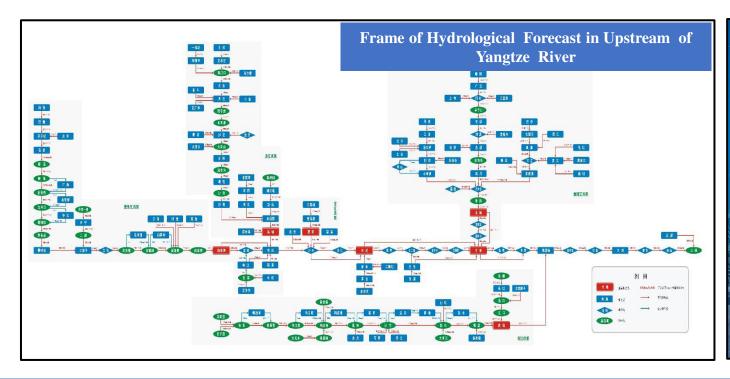
- Establishing 1400 telemetry stations
- Covering nearly 5.8 million km² in the upper Yangzi River Basin
- Only needing 10 minutes to collect the observation data from all stations

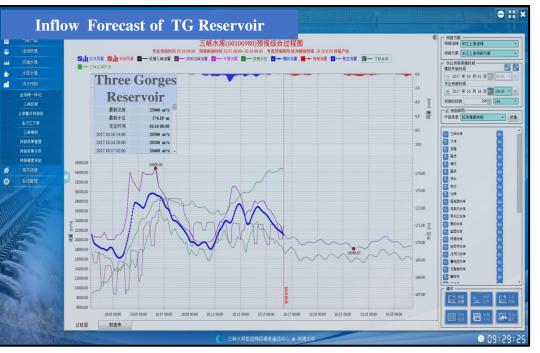



Meteorological and Hydrological Forecast System

Meteorological Forecast System (MFS)

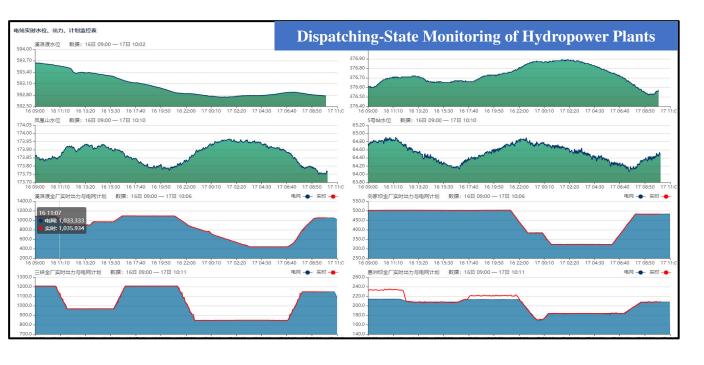
- Including data processing, forecasting result analysis and information services.
- Considering the actual conditions of main hydropower plants
- Strong support for the hydrological forecast and reservoirs dispatching
- Short- and medium- term rainfall forecast and long-term precipitation forecast




Meteorological and Hydrologic Forecast System

Hydrologic Forecast System(HFS)

- Provide a complete service for river-runoff and reservoir-inflow forecast
- Including 60 river sections and 21 impotent reservoirs in the upper Yangtze River
- Forecast period of HFS ranges from 1-7 days to 1 year
- Correct rate of the short-time-forecast results is more than 98%



Intelligent Dispatching System

Intelligent Dispatching System (IDS)

- The cloud computing application platform
- Spatial visualization applications
- Big data analyzing and mining

Process Analysis of Historical Operation of Hydropower Plants

>> 3.7 Comprehensive Benefits

Flood Control

From 2010 to 2020, **58** flood control dispatches have been carried out, with a total of **188.3** billion m³ of flood storage, effectively ensuring flood control safety in the lower reaches of the Yangtze River.

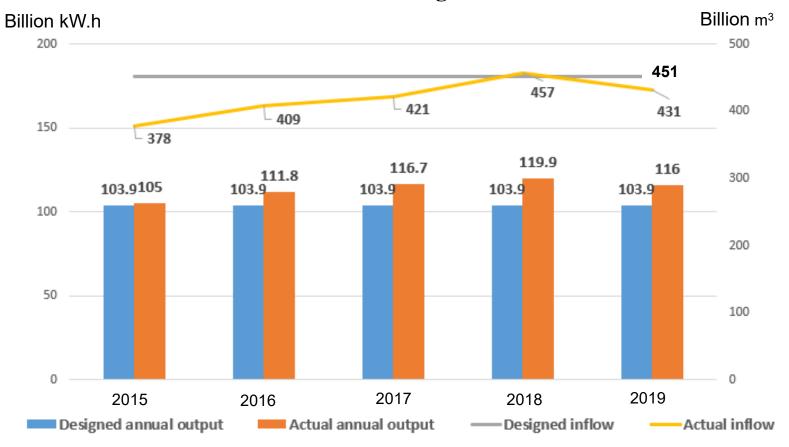
Statistical Table of Flood Control of Cascade Reservoirs CYPC

Year	Max flood peak(m ³ /s) and Time		Max outflow (m ³ /s)	Max peal clipping(m³/s)	Flood control time	Total flood storage capacity (billion m ³)
2010	70,000	20-Jul	40,900	30,000	7	26.6
2011	46,500	21-Sep	29,100	25,500	5	18.8
2012	71,200	24-Jul	45,800	28,200	4	22.8
2013	49,000	21-Jul	35,000	14,000	5	11.8
2014	55,000	20-Sep	45,000	22,900	10	17.5
2015	39,000	1-Jul	31,000	7,400	4	8.85
2016	50,000	1-Jul	31,000	19,000	4	9.78
2017	31,000	27-Aug	19,000	12,000	3	10.4
2018	60,000	14-Jul	40,000	20,000	3	14.9
2019	45,000	8-Aug	32,500	12,500	4	9.80
2020	75,000	20-Aug	48,000	27,000	9	36.9

Navigation

After the Three Gorges project was put into operation, the shipping conditions of the upper reaches of the Yangtze River were greatly improved, and the 10,000 ton fleet could reach Chongqing directly, reduce shipping cost by about 1/3.

The annual cargo volume of the Three Gorges section increased from 18 million tons before the completion of the project to 150 million tons in 2019.



Power generation

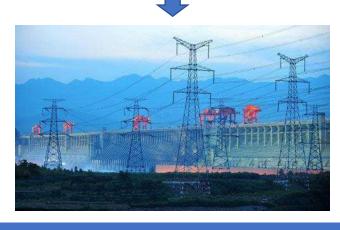
From 2015 to 2019, the inflow of Three Gorges reservoir was 7% less than the normal value, and the power generation of Three Gorges and Gezhouba is 9.6% more than the designed power generation.

Annual Power Generation of Three Gorges Plant and Ge ZhouBa Plant

Ecology & Environmental Protection

By the end of 2019, total power generation of the 4 cascade hydropower plants had reached **2428.8TWh**, equivalent to **21 times** of Beijing's electricity consumption (2018), and **one third** of China's electricity consumption.

Be equal to burning coal 750 million tons



Reduce CO₂ emission 2.0 billion tons

Reduce SO₂ emission 21.5 million tons

Water Replenishment

From 2010 to 2019, the Three Gorges Reservoir replenished **203.2**billion m³ of water to the downstream, the average annual replenishment volume is about **22.6** billion m³, **close to the capacity of an Albert lake**, and the average increase of downstream shipping depth is **0.95**m.



Statistical Table of Water Replenishment of Cascade Reservoirs CYPC

Year	Water Replenishment Days(d)	Replenishment Volume(billion m ³)	Average Additional Depth (m)
2010-2011	164	21.5	1.0
2011-2012	150	21.5	1.0
2012-2013	169	20.9	0.8
2013-2014	180	24.4	1.1
2014-2015	176	24.3	1.3
2015-2016	170	21.3	0.7
2016-2017	177	23.3	0.8
2017-2018	143	22.7	0.9
2018-2019	124	23.3	1.0

✓ Maintain Clean Energy Supply

Effective Management

Power Generation and Navigation

✓ Improve the navigation condition.

✓ Improve flood control capacity

Water Environment I

Flood Control

We can do much more

Water Replenishment

✓ Improve water environment

