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1979-2020年全球气温变化趋势（ERA5数据集） 

Nature Alert: All the coral reefs in the 

world might be gone by 2070 if global 

heating continues on its current path. 

2019-2020: Australian wildfires 

have killed half a billion animals 

and plants. 

Climate Warming 

1 Background 
 



Anthropogenic warming due to increasing greenhouse gas emission has altered 

the climate system and water-carbon cycle 

 

2021年河南7·20特大暴雨 

Increasing GHGs            Global Warming Changing environment 

          More frequent climatic extremes 
2021·7·20 Henan 

1 Background 
 

Floods Wild fires Droughts Rainstorms 



𝑒s(𝑇) = 𝑒s0exp(𝐿𝑣𝑅𝑣 1𝑇0 − 1𝑇 ) 
saturated vapor pressure 

Latent heat of vaporization 

Vapor gas constant 𝑑𝑒𝑠𝑒𝑠𝑑𝑇 = 𝐿𝑣𝑅𝑣𝑇2 

Clausius-Clapeyron 
                               (1) saturation vapor pressure is dependent solely on temperature  

                               (2) 6.8 %/K at 25 oC (usually called as C-C scaling) 

Atmospheric water vapor holding capacity should increase with 

rising temperature  
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2 Hook structure of extreme precipitation and storm runoff 

 In many regions, temperature is rising, while precipitation 

extremes are declining 

Global trend of mean and extreme temperatures during 1979-2021 

Yin J, et al. GRL (2022) 

Trends of precipitation extremes during 1979-2021 

Yin J, et al. Science China Earth Sciences (2023) 

>90% 

+Trend of Tmax 

+Trend of Pmax 

>60% 



2 Hook structure of extreme precipitation and storm runoff 

 
Unlike the thermodynamic expectations, we find a hook structure 

between precipitation/runoff extremes and temperatures  

Hook structure: Extremes strengthen with 

rising temperature up to a peak point (Tpp) 

and decline thereafter 

Binning Scaling 
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2 Hook structure of extreme precipitation and storm runoff 

 The underlying causes of this widely reported hook structure is 

not yet well-understood   

Peak point temperature (℃) 

Yin J, et al. Nature Communications (2018) Yin J, et al. Science China Earth Sciences (2023) 



2 Hook structure of extreme precipitation and storm runoff 

 The underlying causes of this widely reported hook structure is 

not yet well-understood   

Yin J, et al. Nature Communications (2018) 

Figure: Temperature scaling of storm runoff over three typical catchments  



3 Understanding the Hook structure by atmospheric physics 

 Why can we observe a hook structure?   

Figure: Trends in relative humidity, CAPE, and Total column water vapor (TCWV) during precipitation extremes 



Yin J, et al. Water Resources Research (2021) 

 We find negative (sub C-C) scaling rates of Relative 

Humidity and Total Column Water Vapor (TCWV), 

implying continental moisture limitations in hotter 

environments. Atmospheric dynamics might constrain 

extremes intensification. 

Figure: Temperature scaling of CAPE, RH and TCWV 

Figure: Scaling pattern between Relative humidity and temperatures 

Relative Humidity Total Column Water Vapor 

Convective available 

potential energy 

3 Understanding the Hook structure by atmospheric physics 

 Why can we observe a hook structure?   



Divergent sensitivities of Pe are reported  

C-C scaling only tells part of the story 

Local vertical motion 

Available atmospheric moisture 

Zipser (1977)  

 The physical-based diagnose model is used to quantify the thermodynamic and dynamic 

contributions of EPS, which is based on energy budged balance during precipitation processes.  
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Precipitation involves complicated systems and coupled 

processes. How these physical processes impact Extreme 

precipitation sensitivity (EPS)? 

  O’Gorman et al. (2012, 2017) 

3 Understanding the Hook structure by atmospheric physics 

 Why can we observe a hook structure?   



Tpp 

Hook structure 

Thermodynamic Paradox? 

Thermodynamic Dynamic 

ERA5 data pressure 
levels (1-1000hPa) 

We focus on moisture transport in Troposphere 

Physics-diagnosed model 

Yin J, et al. Chinese 

Science Bulletin (2021) 

Thermodynamic 

Dynamic 

3 Understanding the Hook structure by atmospheric physics 

 



3 Understanding the Hook structure by atmospheric physics 

 

Atmospheric 

dynamics 

Atmospheric 

thermodynamics 

Physical-diagnostic model   

Thermodynamic Dynamic 

Thermodynamic contributes to precipitation intensification, 

while atmospheric dynamics decline precipitation in hotter 

environment 

Do all the thermodynamic components always intensify 

precipitation extremes? 



ERA-5 
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By further decomposing moist-adiabatic derivative of 
saturation specific humidity 

s
avg

q
pPR

p

 

   

Pressure 
component 

Temperature 
component 

*

( )s
avg avg

q dT
pT

T dp 


       

* *

( ( ) )s s
avg avg avg

q qdT dT
pLR

T dp T dp 

 
                      

Lapse Rate 
component 

*

~ s
e e

dq
P

dp 


   
  

3 Understanding the Hook structure by atmospheric physics 

 Do all the thermodynamic components always intensify 

precipitation extremes?Can we know more details? 

Gu, Yin*, Nature 

Communications (2023) 



Actual Pe EPS Diagnostic-based EPS 

Figure: Evaluation of simulation performance of physically diagnostic model 

3 Understanding the Hook structure by atmospheric physics 

 
Does the thermodynamic always intensify precipitation 

extremes? Can we know more details? 

Gu, Yin*, Nature 

Communications (2023) 



Figure: Zonal EPS anomalies between the reference and future periods 

Contribution (%/℃) 

The thermodynamic components do not always contribute to 

precipitation intensification due to changes in temperature 

laps rate 

3 Understanding the Hook structure by atmospheric physics 

 

Gu, Yin*, et al. Nature 

Communications (2023) 



中国日尺度偏差校正 

Climate-hydrological model chain 

31 multi-model  ensemble 

11 multi-member ensemble 

Quantile mapping correction 

Does the hook structure imply a potential upper bound for 

future extremes? 

Figure: Bias correction performance of climate outputs 

4 A potential upper bound for future extremes? 

 

Yin J*, et al. Nature Sustainability (2023) 



Global climate model outputs 

Hydrological model (HM)  

Downscaling methods  

Flood assessment 

Sensitivity 

Analysis 

RF algorithms 

Runoff 

simulations

/projections 

Climate 

variables 

We propose a hybrid HM-LSTM model 

4 A potential upper bound for future extremes? 

 Yin J*, et al. Nature Sustainability (2023) 



Sensitivity of climate variables to runoff 

Performance of machine Learning-constrained 

runoff Simulations 
Kang S, Yin J*, et al., 2023 Earth’s Future 

4 A potential upper bound for future extremes? 

 



4 A potential upper bound for future extremes? 

Future projection of precipitation, evaporation and snow cover by Emergent Constraint 

Cai, Yue, Slater, Yin et al. Nature Communications (2022) 



Figure: The GCM ensemble mean change of scaling structures and Tpp relative to historical period 

Historical types:       Decreasing (D)      Increasing (I)        Hook(H) 

 

 

Future types:            Decreasing (D)       Increasing (I)       Hook(H) 

 

Nine changing types 

Does the hook structure imply a potential upper bound for 

future extremes? 

4 A potential upper bound for future extremes? 

 



More than 80% of continental areas retain a hook structure during historical and future periods, while Peak 

point temperature (Tpp) progressively increases with atmospheric warming. 
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Along with an increasing Tpp, the hook structure 

shows an upward shift, resulting in a significant 

intensification of  hydrological extremes in the future. 

Future 

Historical 

The hook structure is not stable under climate warming! 

Figure: Relative changes of precipitation extremes in future climates 

Does the hook structure imply a potential upper bound for 

future extremes? 

4 A potential upper bound for future extremes? 

 



Does the hook structure imply a potential upper bound for 

future extremes? 

4 A potential upper bound for future extremes? 

 

Tpp shifts toward warmer temperatures，resulting in 10%–30% increases in storm runoff extremes. 

Yin J, et al., WRR (2021 Editors’ Choice Awards) 



Conclusions 

 

Precipitation and storm runoff extremes show a hook structure with 

temperature rising. 

 

Atmospheric thermodynamic intensifies precipitation extremes, while 

atmospheric dynamics decline precipitation in hotter environment. 

 

The thermodynamic components do not always contribute to precipitation 

intensification due to changes in temperature laps rate. 

 

The hook structure does not imply potential bound for future extreme 

intensification. 
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