A Multi-mode Neural Network for the Long-term Sea Wave Hindcast in the Island Coastal Region of South China Sea

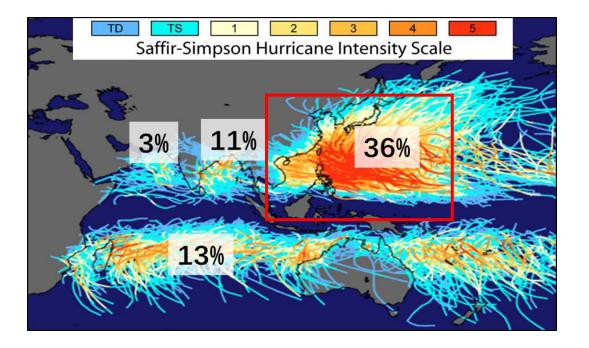
Jiawen Liao, Yineng Li and Shiqiu Peng

State Key Laboratory of Tropical Oceanography South China Sea Institute of Oceanology, Chinese Academy of Sciences

outlines

- **1. Motivation**
- 2. Data and Methods
- **3. Results**
- **4.** Conclusions

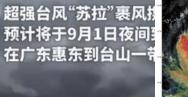
> Typhoon and destructive wave

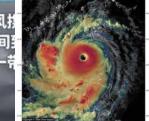


over 30% of the total TCs

Super typhoon Saola (2023) 4-6m extreme wave

9月1日下午 深汕特别合作区小漠国岛。





Super typhoon

Haikui(2023)

- Long-term Significant wave height (SWH) data, as a crucial information to reflect the character of sea waves, plays a vital role in coastal engineering design, operation and maintenance.
- Mainly from the observation or reanalysis data.

Gwadar port

- In most cases, there are not enough observations (relatively short) for the analysis.
- The extension of SWH observations in short term is feasible.
- However, it is unavailable for longer-term extension due to rapidly increasing errors.

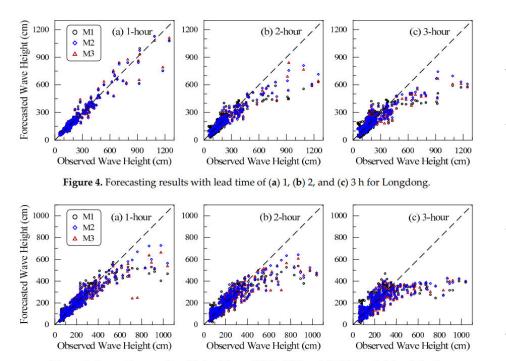


Table 2. Comparison of error statistics between LSTM and EMD-LSTM, in addition to the degrees of improvement for the 3, 6, 9, 12, 24, 48 and 72 h forecast windows for NDBC buoys 41046 and 41047.

	LSTM			EMD-LSTM			Degree of Improvement			
	Forecast Hours	RMSE (m)	MAPE (%)	R	RMSE (m)	MAPE (%)	R	RMSE (%)	MAPE (%)	R (%)
	3	0.15	6.4	0.97	0.11	1.41	0.985	30.1	77.8	1.5
41046	6	0.22	9.2	0.92	0.12	6.68	0.979	44.6	27.4	6.4
	9	0.28	11.1	0.88	0.16	10.20	0.960	42.4	7.8	9.1
	12	0.33	13.2	0.84	0.19	12.01	0.950	41.1	9.2	13.1
	24	0.45	19.0	0.67	0.26	11.41	0.900	41.8	39.9	34.3
	48	0.58	31.1	0.41	0.38	18.90	0.790	33.7	39.2	92.7
	72	0.60	33.7	0.32	0.44	18.70	0.690	26.1	44.5	115.6
41047	3	0.19	7.2	0.97	0.10	3.96	0.991	46.8	44.9	2.1
	6	0.28	11.3	0.93	0.14	5.51	0.982	50.2	51.2	5.6
	9	0.35	13.1	0.88	0.18	7.38	0.971	49.2	43.7	10.3
	12	0.40	15.0	0.83	0.21	8.42	0.957	47.0	43.9	15.3
	24	0.55	22.0	0.67	0.28	11.76	0.922	48.2	46.5	37.6
	48	0.67	33.4	0.43	0.47	20.35	0.769	29.9	39.1	78.9
	72	0.71	38.8	0.34	0.48	21	0.757	32.2	45.9	122.6

Figure 5. Forecasting results with lead time of (a) 1, (b) 2, and (c) 3 h for Guishan Island.

(Chen, et al. 2020)

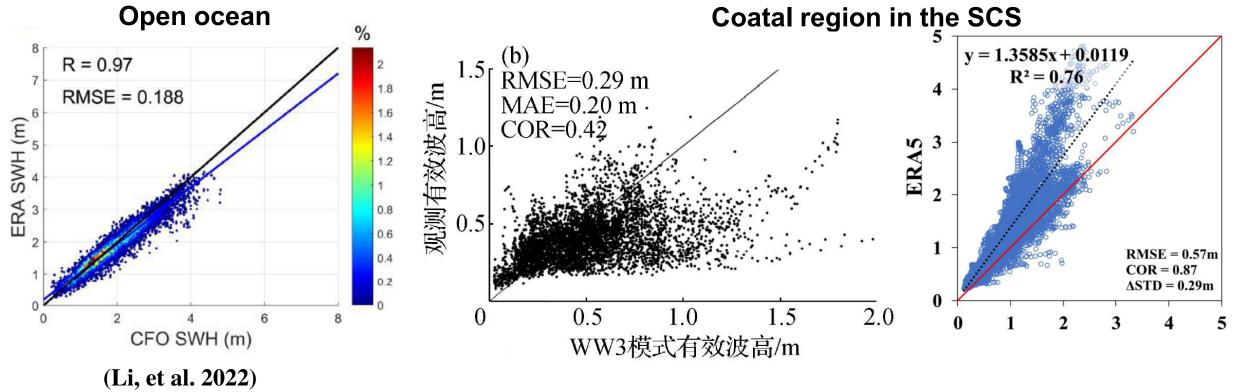
(Zhou, et al. 2021)

Global Ocean Wave Reanalysis Data

Reanalysis Data	wave model	Time	Spatial Resolution	Temporal Resolution
ERA-40	WAM	1957-2002	1.5°×1.5°	6h
ERA-Interim	WAM	1979-2019	0.125°×0.125°	6h
ERA5	WAVEWATCH III	1979-2019	0.5°×0.5°	1h
WAVERYS	MFWAM	1993-2021	0.2°×0.2°	3h
NOAA	WAVEWATCH III	1997-2019	1.25°×1°	3h

Low resolution

Large biases of numerical model in the coastal region

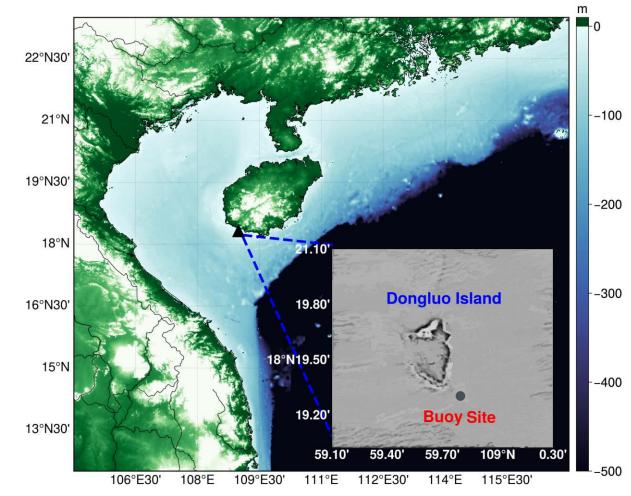


(Li et al., 2020; Liu et al., 2022)

- 1. Can the long-term modeled significant wave height (SWH) be improved by machine learning?
- 2. How can we use the prior knowledge of physical ocean to further improve the correction results of SWH?

WAVEWATCH III

- ✓ Region: 78°E-150°E, 22°S-41.5°N
- \checkmark Resolution: $1/12^{\circ} \times 1/12^{\circ}$, 1h
- ✓ Wind reanalysis: ERA5+Holland model
- **D** Buoy data (Dongluo island)
- ✓ Resolution: 30min
- ✓ Time: 2020-2021
 2020 for training
 2021 for validation



D Long-Short Term Memory neural network

- ✓ SM-LSTM: input layer, hidden layer, output layer
- ✓ Input time data are from the previous 12h:

$$Y_{t} = f(X_{t-12}, X_{t-11}, X_{t-10}, \dots, X_{t-1})$$

$$SWH$$

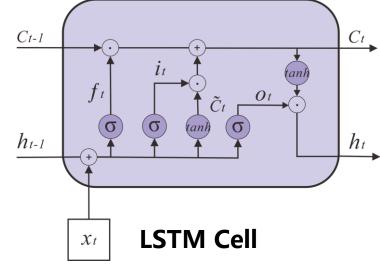
$$Model variables$$

$$Grrection$$

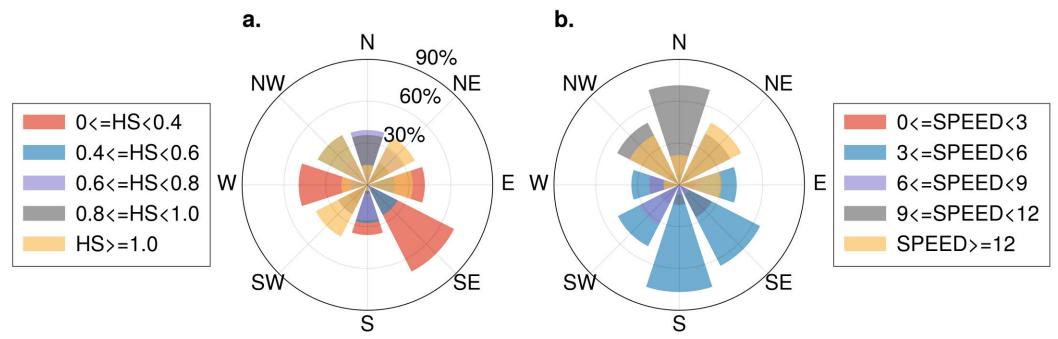
$$Wind reanalysis$$

$$Wind speed$$

$$Wind direction$$

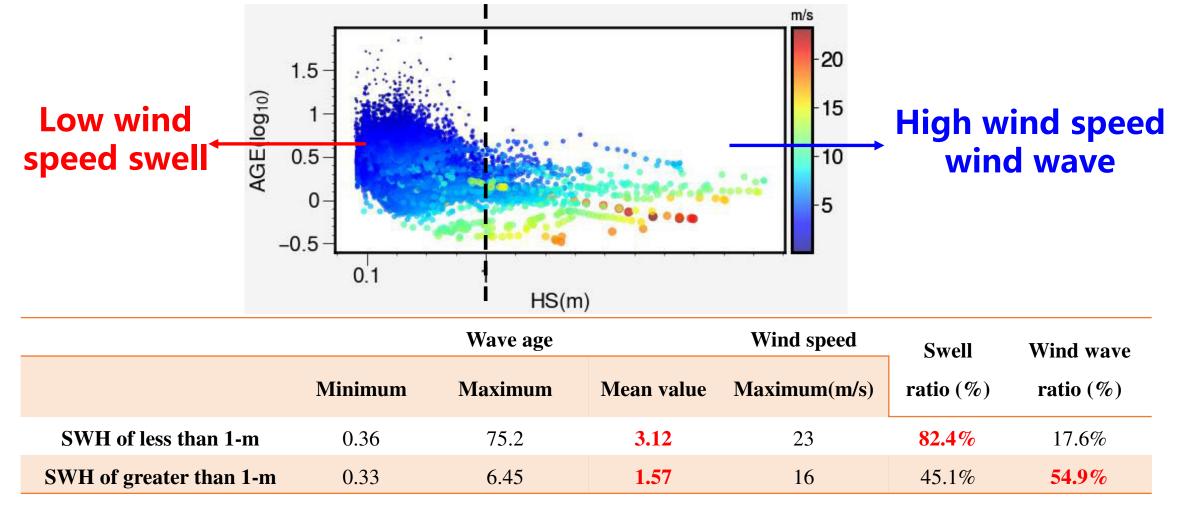


- > The analysis of wave properties
- The proportion of different ranges of SWH (a) and wind speed (b) associated with the mean wave direction.

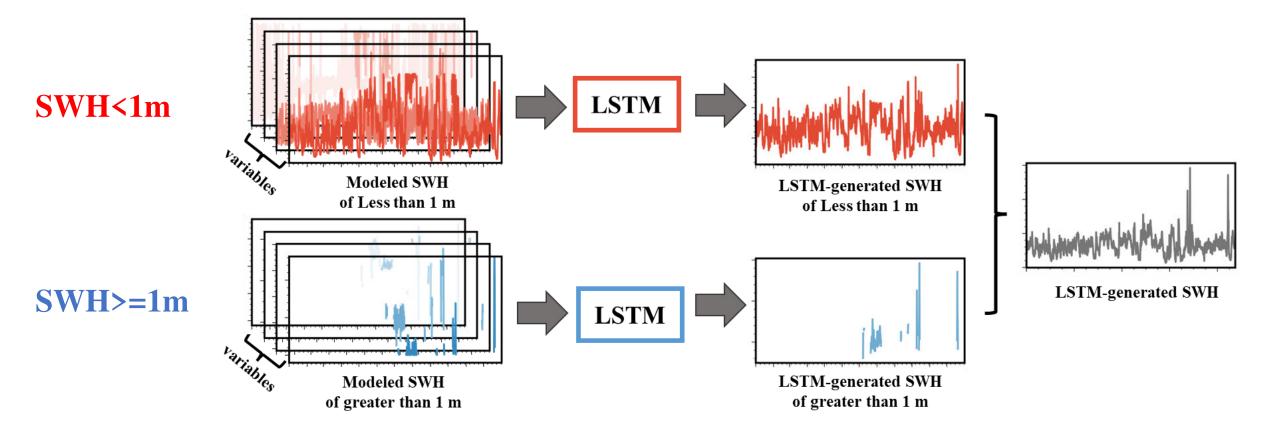


The SWH of greater than 1m are dominated by **the high wind conditions of northeasterly and northwesterly** (>12 m/s). While the SWH less than 1m are mainly affected by **the low wind conditions of westerly, southerly, and easterly** ranging from 3 to 6 m/s.

- > The analysis of wave properties
- The scatterplots between the SWH and the wave age with different wind speeds.



> A multi-mode correction model (MM-LSTM)

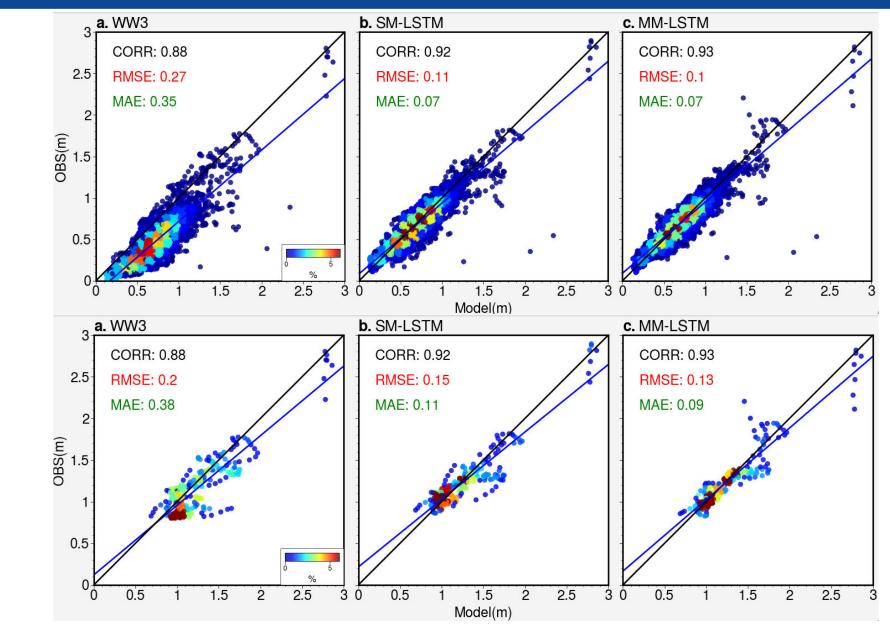


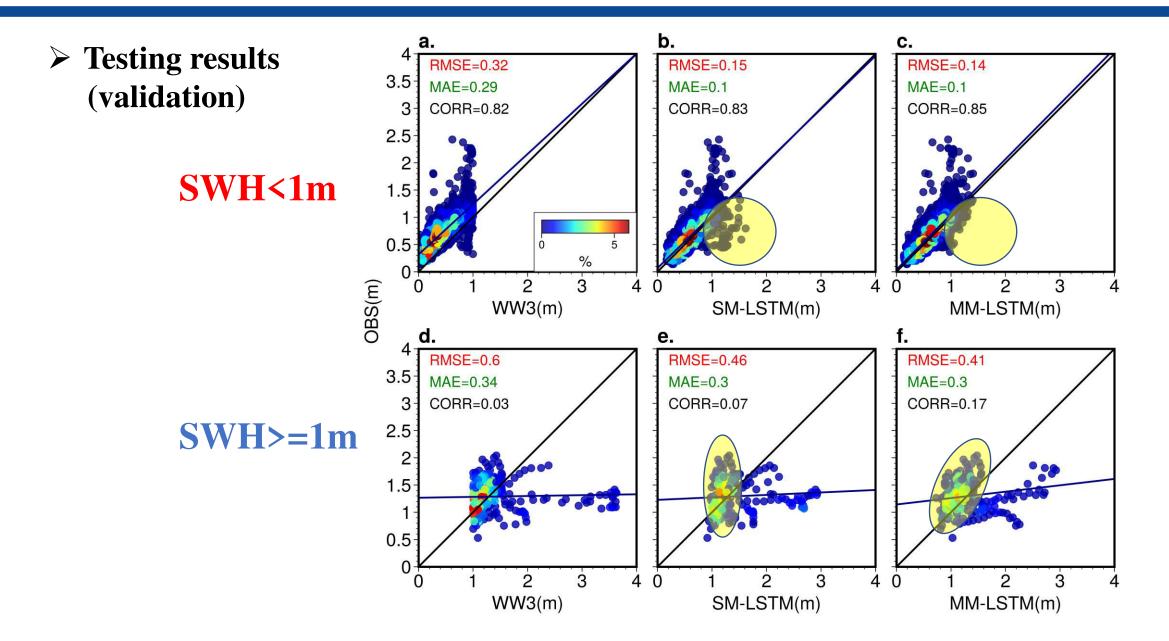
Sensitivity experiment

Experiments	Input variable				
LSTM I	SWH				
LSTM II	Wind speed				
LSTM III	SWH, Wind speed				
LSTM IV	SWH, Wind speed, Wind direction				
LSTM V	SWH, mean wave direction				
LSTM VI	SWH, Wind speed, Wind direction, mean wave direction				

ALL

>1m





3.Results-sensitivity experiment

• A multi-mode correction model

experiments	Input variables	Error statistics RMSE: 0.34 MAE: 0.29 CORR: 0.78 (Numerical model data)						
		Single-mode			Multi-mode			
		RMSE	MAE	CORR	RMSE	MAE	CORR	
LSTM I	SWH	0.19	0.11	0.78	0.2	0.12	0.77	
LSTM II	Wind speed	0.26	0.18	0.51	0.22	0.17	0.64	
LSTM III	SWH, Wind speed	0.21	0.12	0.76	0.2	0.12	0.78	
LSTM IV	SWH, Wind speed, Wind direction	0.19	0.12	0.78	0.18	0.11	0.81	
LSTM V	SWH, mean wave direction	0.2	0.12	0.75	0.18	0.11	0.81	
LSTM VI	SWH, Wind speed, Wind direction, mean wave direction	0.17	0.11	0.81	0.16	0.11	0.83	

In general, the MM-LSTM can effectively correct the results of numerical models in all quadrants, but get little effect in some quadrants with few samples.

	Q1 DIRMN∈(0,90°)		Q2 DIRMN∈(90°,180°)	Q3 DIRMN∈(180°,270°)	Q4 DIRMN∈(270°,360°)
Training samples		0.0% 0+0	0.31% 29+0	7.31% 602+71 ×	92.38% 7982+540 √ (>1m+<1m)
<1m	0	.54→ 0.28	0.44→ 0.38	0.26→0.26	0.12→0.12
>1m	0	0.24→0.55	0.37→0.50	0.29→0.39	0.91→0.51

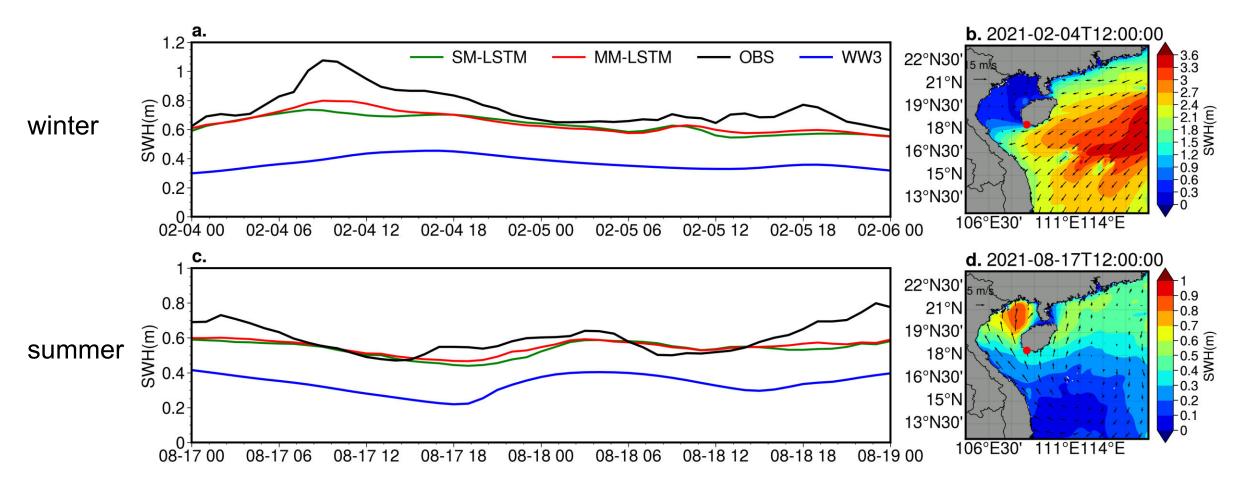
The results generated by LSTM depend on the number of training samples \checkmark The MM-LSTM not only can capture low sea state, but also has better performance than the SM-LSTM in the high sea state (Q4). \checkmark However, the ability of the MM-LSTM to capture high sea state is also limited by the total training

samples.

The green numbers: SM-LSTM

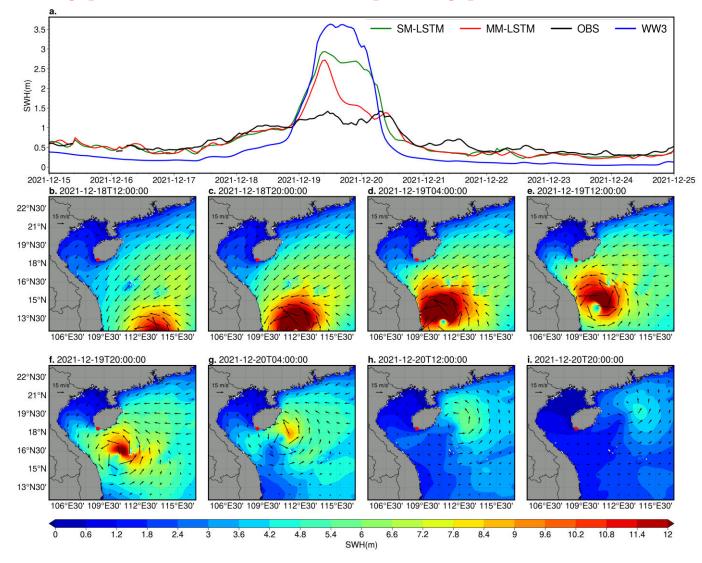
The red numbers: MM-LSTM

DNormal: East Asian monsoon



The MM-LSTM has a slight improvement over the SM-LSTM, but the difference is not significant.

□Typhoon case 1: Super typhoon Rai (2021)

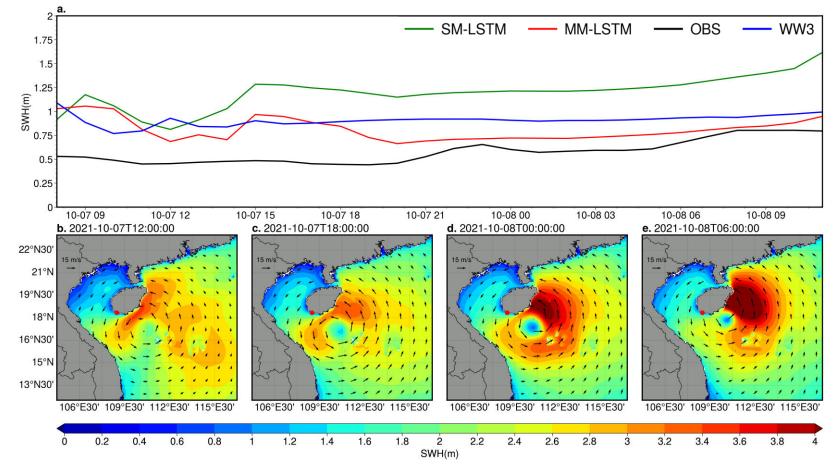


The SM-LSTM can correct the overestimated peak of SWH simulated by the numerical model to some extent.

• The MM-LSTM can also

significantly reduce the peak of SWH and get much better results than the SM_LSTM.

□Typhoon case 2: Super typhoon Lionrock (2021)



The SM-LSTM cannot correct the overestimated results of WW3 and even add errors to the results.

The MM-LSTM can reduce the errors of WW3 significantly.

4. Conclusions

- Multiple factors (**SWH, DIRMN, wind speed, and wind direction**) should be considered in the machine learning correction model.
- The **SM-LSTM** can improve the RMSE and MAE of SWH generated by the numerical model. However, the improvement of SM-LSTM is not significant under **the high wind conditions**.
- The MM-LSTM significantly reduces the RMSE and MAE of modeled sea waves by **52.9% and 62.1%**, respectively, which outperforms the SM-LSTM.
- The MM-LSTM outperforms the SM-LSTM in the **high sea state** and can effectively correct the overestimation by the numerical model during a passage of typhoon.



Thank you!