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THE LANCANG-MEKONG RIVER BASIN
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Floating homes on the Mekong



HYDROPOWER POTENTIAL IN THE MEKONG

{\ — | DaMs
400 km Built/
< = O under construction

3, §, nm Battery of Southeast Asia:

o«=f| The Mekong Basin has large potential for

o & ; hydropower generation [268,000 gigawatt
i hours of electricity per year (GWh/year)], of

MYANMA;’W 17:;:;1“ ,E which around half has been developed.

a‘ 0 () i -~~~ Country border

(1eak/ymo/3) burd

\\3 ) b
ORI
- A AP \“l
L 0 X \
iy THA".AND '/ m ) Sl
: ‘\‘ ?f e '-:;\ :
.% & 1 /f' Y ‘_.: -“(
Y ¢ l
T ,’,’ CAMBd[ﬁll}‘ Loxﬁs}Se San 2
-s, % 3
AN ) / 'w‘_g = T < Stung Treng
.} i, T . \ Sambor
2 '..‘,' \

Schmitt et al. 2019



FLOOD IN MEKONG

it 2 - Flooding Risk in the Lancang-Mekong River

= Basin under Global Change

from Part I - Water-Related Risks under Climate Change

: il Published online by Cambridge University Press: 17 March 2022
;i’;' : i By Xiaobo Yun, Jie Wang, Huan Wu, Binod Baniya, Hui Lu, Siao Sun, Ximeng Xu
ﬁ Xingcai Liu and Qiuhong Tang ’
In the future, this basin should
experience a higher flood risk,

i with more flood events and a
S

f' ,q;w (S relative increase in the flood peak
| ke ¥ and frequency reaching up to +15
[ o Tk | and +58 per cent, respectively.
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Mekong flood along the border between Thailand and Laos. Photo
taken by an astronaut aboard the International Space Station (ISS).



DROUGHT IN MEKONG

= Science

Mekong megadrought erodes food security

Vietnam hit with drinking water shortages and salt-ravaged rice paddies

6 APR 2016 + BY CHRISTINA LARSON

The lower Mekong river basin has been
experiencing severe drought hazards with
serious economic losses.

With different climate scenarios, the lower
Mekong river basin is likely to see more
severe droughts in the next 30, 60, and
90 years due to less precipitation, high air
temperature, and high evaporation.



BUILD RESILIENCE TO CLIMATE CHANGE

* Reservoirs are playing an important role in clean energy (Goal 7 SDG), and
flood and drought (Goals 11 and 13 SDG) mitigation in the Lancang-Mekong

river basin.

* Can the reservoirs be managed to mitigate future water hazards from climate

change? And at what cost?



THE VIC-R MODEL WITH RESERVOIR IMPACTS

Variable Infiltration Capacity (VIC)
Macroscale Hydrologic Model
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The VIC model (Liang et al., 1994) is a large-
scale, semi-distributed hydrologic model.

The routing model with reservoirs (the
red dots).



RESERVOIR OPERATION STRATEGIES

* To assess the reservoir impact, an advanced Standard Operation Policy type 2

(SOP2) (Wang et al., 2017a) model was incorporated into the VIC model.

* The model assumes reservoirs mainly to operate for flood control along with

the environmental protection and power generation.

* A number of reservoir operation strategies are considered, that is, prioritizing
hydropower generation (maintain a relatively high hydraulic water head to
improve power generation), prioritizing flood control (maintain a relatively

low hydraulic water head for incoming flood during wet season), and

compromising strategies.

Yun et al. 2021, 2022



MODEL SETTING
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The hydrological processes are simulated at daily time
scale with a 0.25° spatial resolution.

103 reservoirs are considered in the Lancang-Mekong
river basin.

Future climate forcing data were provided by the
Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3b). The bias-corrected CMIP6 climate forcings
contain five GCMs for three scenarios (SSP126,
SSP370, SSP585)

Chiang Sean (CS) basin:
upstream
Mukdahan (MK)

Kratie (KT) basin: downstream ?



Yun et al. 2020
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1986 1990 1994

1998 2002

Nash-Suicliffe Efficiency (NSE): 0.69-0.76

2006 2010 2014

NSE of natural simulations: -0.13
NSE of simulation with dams: 0.61-0.75
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PERFORMANCE OF RESERVOIR SIMULATIONS
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Comparison of observed and simulated hydropower
generation at Lancang-Mekong countries
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RESULTS: FUTURE HYDROLOGIC EXTREMES
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probability at the three stations during 1981-2100 under SSP585 scenario

Yun et al. 2021 12



RESULTS: BASIN-WIDE EXTREME EVENTS
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Level curve of the joint probability distribution of the SSI-3 at upstream
and downstream stations under SSP585 scenario

Reservoir regulation can mitigate the basin-wide dry extreme events by
100% and the wet extreme events by 32%.

Yun et al. 2021
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RESULTS: CHANGE OF FLOOD WITH RESERVOIRS
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----- Flood Magnitude without Reservoir Regulation == Flood Frequency without Reservoir Regulation

- Flood Magnitude under Prioritizing Hydropower strategy = Flood Frequency under Prioritizing Hydropower strategy
----- Flood Magnitude under Prioritizing Flood Control strategy ----- Flood Frequency under Prioritizing Flood Control strategy
[ 1 Flood Magnitude under Compromising strategy [_1 Flood Frequency under Compromising strategy
The 30-year moving average relative changes of flood magnitude and flood frequency with respect to the
baseline period during 1980-2009

Adaptive reservoir operation can reduce flood magnitude by 5.6%—-6.4% and
reduce flood frequency by 17.1%-18.9%.

14
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RESULTS: IMPACTS ON HYDROPOWER
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===== Hydropower under Prioritizing Flood Control strategy = Hydropower Loss

The 30-year moving average relative changes of hydropower generation with respect to the baseline period
during 1980-2009. The hydropower loss is defined as the difference of hydropower generation using the two
reservoir operation strategies compared to the baseline period.

Adaptive reservoir operation reduces flood at the cost of 9.8%-14.4% of
basin-wide hydropower generation.

Yun et al. 2022 15



RESULTS: IMPACTS ON HYDROPOWER
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If managed properly, reservoirs at the upstream
can play an important role in reducing the flooding

at the downstream.

Upstream reservoirs suffer more hydropower loss
(5.4 times) than downstream ones when flood
control is prioritized in reservoir regulation.
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TAKE HOME MESSAGE

* A reservoir module was incorporated into the Variable Infiltration Capacity
(VIC) hydrological model to simulate the streamflow susceptible to the

reservoirs in the Lancang-Mekong river basin.

* Reservoirs can be managed to mitigate the risks of hydrological extreme

events, and help achieve Goals 11 and 13 SDG in the river basin.

* Adaptive reservoir regulation comes with a cost of hydropower generation,
suggesting the importance of coordinating water and energy management

across countries in the transboundary river basin.
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