

Magnetic Fe₃O₄@SiO₂ study on adsorption of MO on nanoparticles

huanhuan Jin Northeast Agricultural University

Content

- Research Status
- Research contents
- Findings

Research Status

Status of organic dye wastewater treatment in water

Many treatment methods and treatment processes have been used for the treatment of various types of pollutants in water, and the main methods include chemical precipitation, membrane separation, oxidation reduction, adsorption, and so on.

Chemical precipitation

The safety of post-floc culation by-product sl udge cannot be prop erly addressed

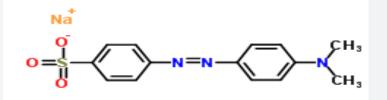
Membrane treatment

Intercepts pollutant s, but faces membr ane contamination challenges

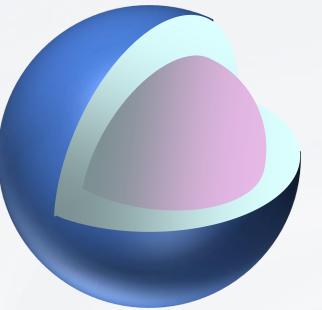
Oxidation-reduction method

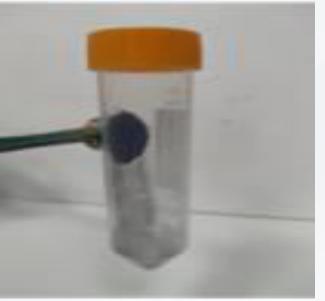
Higher operating costs and complex installatio ns with limited treatmen t capacity

For an efficient, practical, conven ient and econom ical water polluti on treatment me thod



Research contents

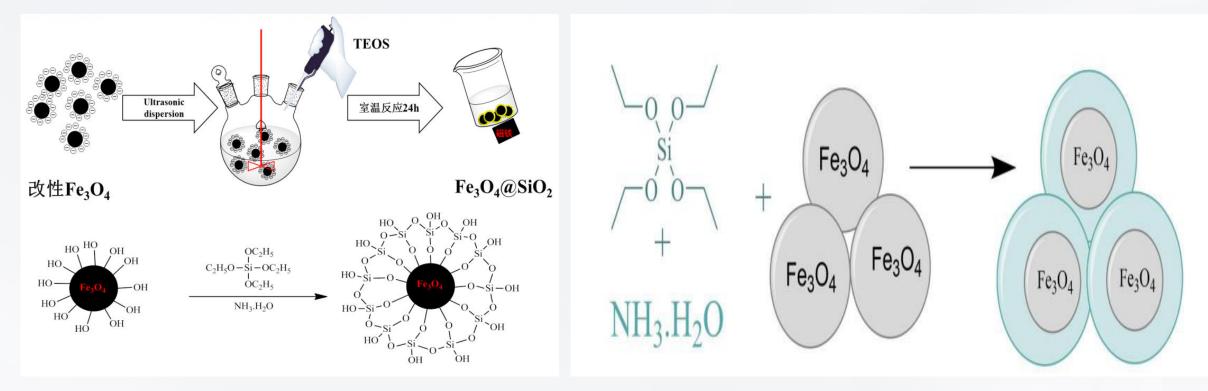

Target contaminant MO and adsorbent Fe₃O₄@SiO₂



MO solution is one of the typic al anionic dyes, and the need for reasonable wastewater trea tment processes is particularly important because of the com plex structure of MO dyes, whi ch are not easily biodegradabl e or photodegradable.

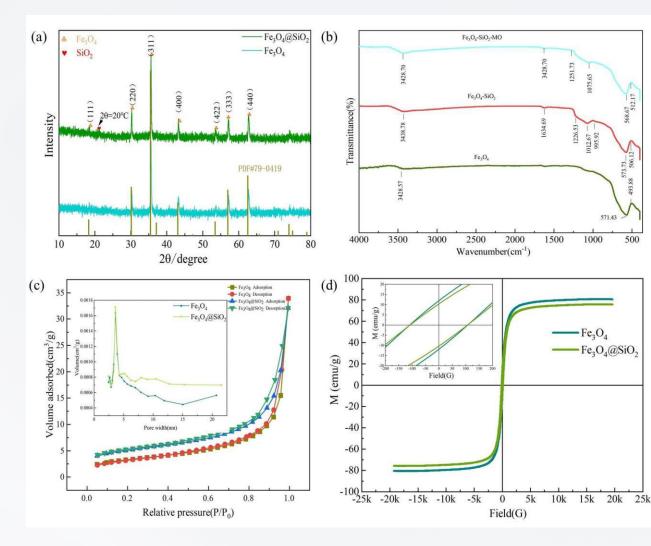
> The adsorbent has a large surface area and small particle size and easy separation characteristics, can be effectively removed by hydrogen bonding and electrostatic interactions with the MO dye molecules to remove the adsorbent, it is an ideal adsorbent with high efficiency, safety and reusability.

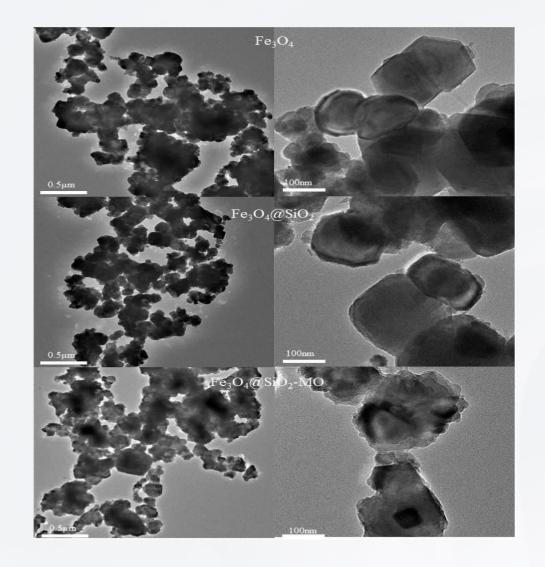
Research contents

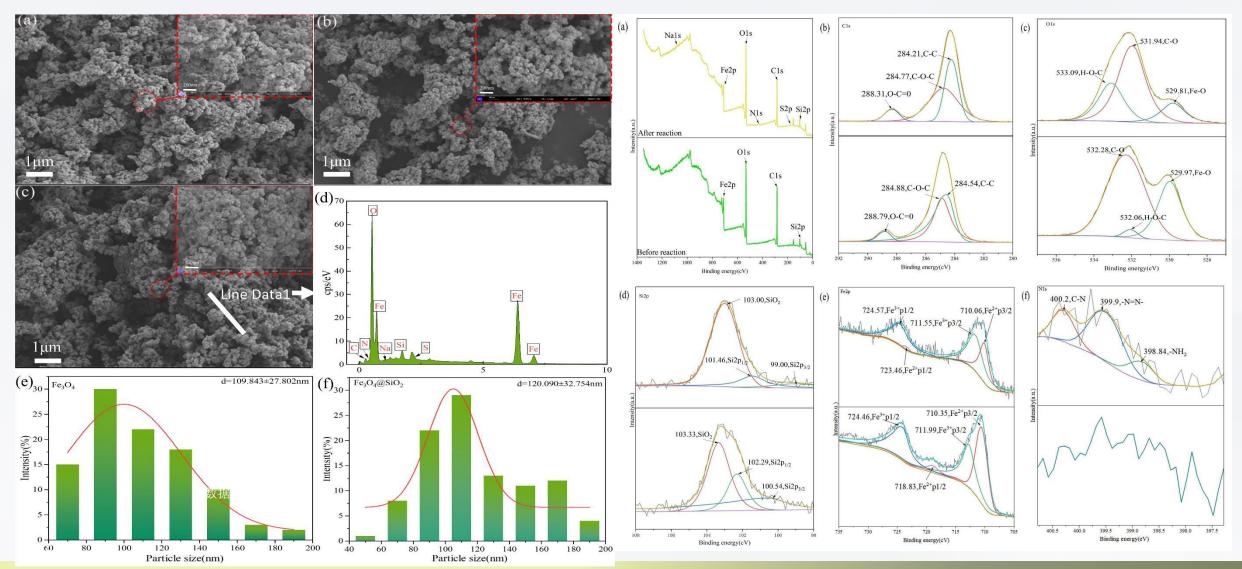


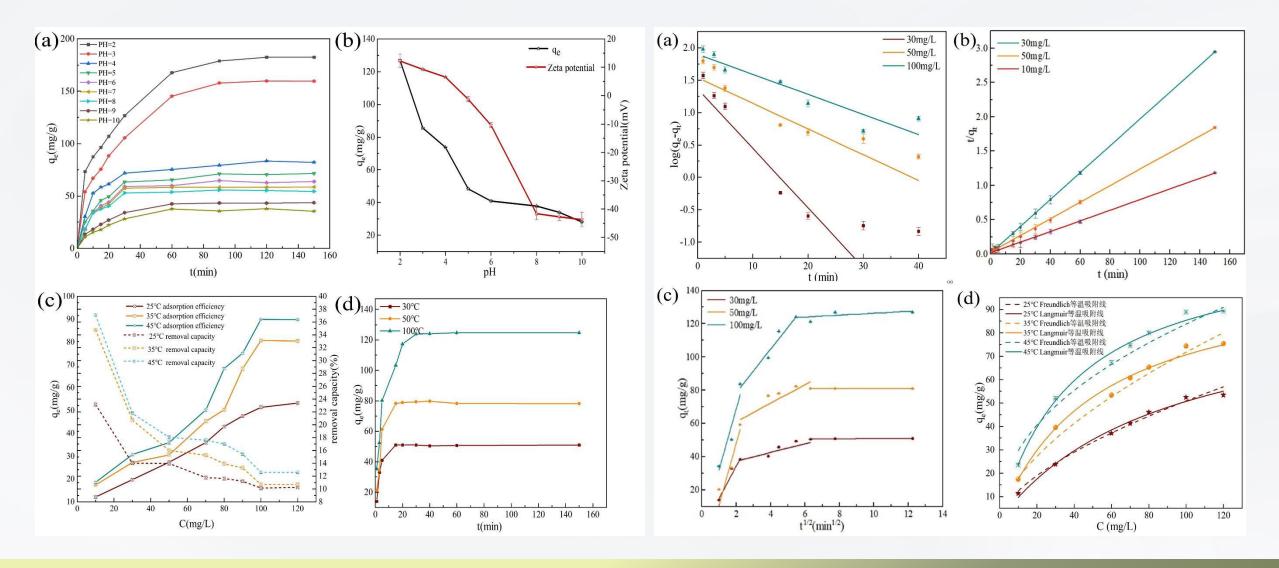
Preparation of adsorbent Fe₃O₄@SiO₂

1 Synthesis of Fe_3O_4 nanoparticles by chemical precipitation method, The reaction equation is as follow :


 $Fe^{2+}+2Fe^{3+}+8OH^{-}=Fe_{3}O_{4}+4H_{2}O$


2 In this experiment, the Fe₃O₄@SiO₂ material was prepared by Sol-Gel method


1 Characterization



1 Characterization

2 Adsorption experiment results

2 Adsorption experiment results

Kinetic model fitting parameters for the adsorption of MO by Fe₃O₄@SiO₂ nanomaterials

C ₀ (mg/L)	p	seudo-first-orc	der	pseudo-second-order			
	К ₁	q _e	R_1^2	K ₂	q _e	R_2^2	
	(mg/(g/h))	(mg/g)	N1	(mg/(g/h))	(mg/g)	112	
30	0.714	76.207	0.86443	0.0994	51.18	0.99996	
50	0.219	77.983	0.8632	0.0654	82.85	0.99982	
100	0.184	114.024	0.84846	0.0396	129.19	0.99986	

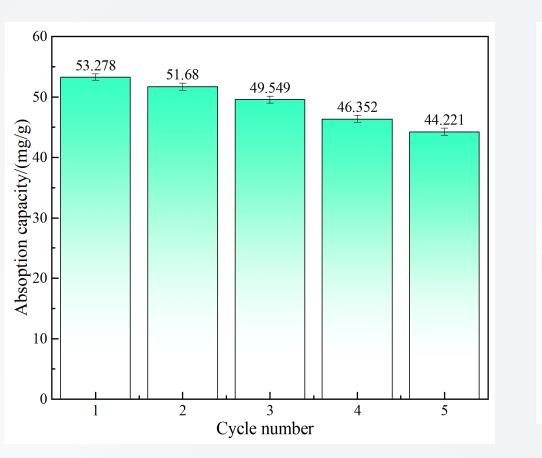
Intraparticle diffusion model for MO adsorption by Fe₃O₄@SiO₂ nanomaterials

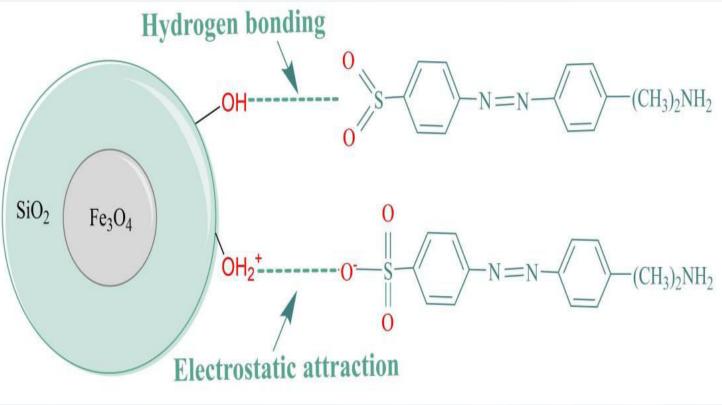
	Intraparticle diffusion model								
C ₀ (mg/L)	K _{d1}	С	R ²	K _{d2}	С	R ²	K _{d3}	С	R ²
	(mg/g.mi n ^{1/2})	(mg/g)		(mg/g.mi n ^{1/2})	(mg/g)		(mg/g.mi n ^{1/2})	(mg/g)	
30	19.357	4.424	0.946	2.525	32.449	0.903	0.064	50.144	0.911
50	37.016	26.113	0.843	9.521	30.368	0.809	4.108	80.768	0.963
100	36.752	4.717	0.889	10.017	64.371	0.719	0.652	120.572	0.905

2 Adsorption experiment results

Adsorption isotherm parameters

T(°C)	Langmuir			Freundlich		
	q _m (mg/g)	b (L/mg)	R ²	K _F	n	R ²
25℃ 35℃ 45℃	96.484 107.467 119.873	0.011 0.0191 0.0246	0.989 0.997 0.994	2.992 4.445 10.483	2.615 2.604 2.451	0.985 0.990 0.974


Thermodynamic parameters of MO adsorption by Fe₃O₄@SiO₂ nanomaterials


Т(К)	Кс	△G ⁰	△Ħ⁰	∆ \$ ⁰
	(ml/g)	(KJ/mol)	(KJ/mol)	(J/(mol.K))
298	1.006	-0.01482	1.2417	4.2065
308	1.0187	-0.04744		
318	1.0383	-0.09937		

2 Adsorption experiment results

3 Exploration of adsorption mechanism

Findings

In this thesis, Fe₃O₄@SiO₂ core-shell nanomaterials with good adsorption properties were obtained by using Sol-Gel to encapsulate mesoporous SiO₂ on magnetic Fe₃O₄, and the increase in adsorption efficiency was attributed to the increased surface area of Fe₃O₄@SiO₂. Results show that the highest unit Fe₃O₄@SiO₂ to MO adsorption capacity can reach 182.503 mg/g, far more than unmodified Fe₃O₄ before 15.5 mg/g. The adsorption kinetics of the adsorbent is fitted with quasi-secondary kinetics, and the intraparticle diffusion kinetics indicates that the adsorption process is determined by multiple ratecontrolling steps. thermodynamic studies show that the adsorption of Fe₃O₄@SiO₂ on MO is heat-absorbing and spontaneous, and MO can interact with the adsorbent through electrostatic interactions and hydrogen bonding. In addition, Fe₃O₄@SiO₂ has good regeneration ability, and the unit adsorption capacity can still reach 83% of the initial unit adsorption capacity after 5 times of reuse. Therefore, Fe₃O₄@SiO₂ nanomaterials have good adsorption performance, and are safe, efficient and reusable, which is an ideal adsorbent for treating MO dye wastewater.