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Images of low-flow and base-flow in Virginia streams ,
Kappahunnouh County stream.

Definition: Baseflow (also called drought flow, groundwater recession flow, low flow, low-water flow, low-water discharge
and sustained or fair-weather runoff) is the portion of the streamflow that is sustained between precipitation events, fed to
streams by delayed pathways. It should not be confused with groundwater flow. Fair weather flow is also called base flow.

Significance: It carries substantial significance for the health and stability of river and lake ecosystems.

The role of baseflow is frequently underestimated: Ahiablame et al. (2017) pointed out that 60% of streamflow in the
Missouri River basin is derived from baseflow. The simulation results from Miller et al. (2016) show that 56% of the surface
water in the Upper Colorado River Basin originated as base flow.

Previous studies on baseflow have primarily focused on temperate rivers, with some coverage of cold-region rivers such
as those in the Arctic, Alaska in the United States, and the European Alps. However, due to cold temperatures, oxygen

deficiency, and limited accessibility, there is essentially a lack of research related to ri_
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® The SRYR consists of the Tuotuo River, Dangqu River, the

90.0E 92.OE 94.OE 96.0E
Chumal River, and the Tongtian River.

® The total length of the main stream of the Tongtian River is
% 1174km, with a catchment area of 13.77x10%m?, accounting
> for 7.6 percent of total area of the Yangtze River catchments.

Legend ® The source region has an average altitude of 4500m above
A Hydrological Station . . . o
v suion|  S€a level, with the highest point reaching 6486m.
—River
Z ) DEM ® This area is dominated by unique plateau climates, with an

w High: 6584

average annual temperature ranging from -17°C to -5.5°C.
® Annual precipitation ranges from 250 to 600 mm.

Sl ® The vegetation that covers the headwaters primarily consists
‘ of three types: alpine meadow, grassland, and marsh. The
ecosystem is of simple structure, poor resilience, and low self-
recovery ability, and once the ecological environment is
damaged, an ecosystem collapse may occur.

® Under the joint influences of climate change and anthropogenic disturbance, problems like accelerated permafrost
melting, grassland degradation, soil erosion, and land desertification directly threaten the stability of the rivers’
ecosystems and has recently been recognized as a serious social concern. Moreover, supra-permafrost water has
become a major source of surface water at the Zhimenda and Tuotuohe stations, implying that the Yangtze River
Water Tower has become increasingly unstable. To prevent further degradation, in 2005, China's State Council

invested 7.5 billion yuan RMB to implement more than 22 ecological restoration programs in the

Sanjiangyuan Nature Reserve, covering the headwaters of the Yangtze River, the YeIM

Mow: 3333
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Some reasons the SWAT Model is so widely used
v Can predict the effect of soil, land use, and management on water
and water quality

v" Physically based
v Computationally efficient
v Uses readily-available inputs
v Well-documented, with several users manual and a theoretical
manual
Weather Stations \/

and Time Series

Open source, which means that the alﬁorithms are available to all
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Baseflow separation approaches

® Two-parameter digital filtering method
® BFI methods
& the standard BFI(f) method
€ the modified BFI(k) method
® HYSEP methods
€ the fixed interval method
€ the sliding interval method
€ the local minimum method
® PART methods

Baseflow evaluation criterion

(Since the applicability of the baseflow separation
methods differed in various regions, it is necessary to
evaluate their practicalities in the SRYR.)

Considering that baseflow is relatively stable, the
reliability of annual separated baseflow can be assessed
using the standard deviation and extreme value ratio of
the BFI series. Additionally, strict baseflow points are
selected as baseflow references (considered to be true
values). We evaluate the accuracies using the Nash-

Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE).
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Trend and breakpoints detecting

The trend in baseflow and its corresponding predictors at
annual or seasonal scales from 1957 to 2020 can be
estimated using the non-parametric Mann-Kendall test, the
Sen’ s Slope test, and linear regression analysis.

Correlation Analyses

The correlation between baseflow and its potential
influencing factors is evaluated using the Spearman
correlation analysis.

Attribution analysis of baseflow

We use the elasticity approach to quantify the relative
contributions of climate factors and human activities to
changes in baseflow. Vaer & Energy Balance component]| Simplifed Blance

Land Water Balance

Budyko
framework
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(a)

®» @ The Eckhardt method has the lowest median and mean of
the extreme value ratio, and produces the largest NSE/KGE
mean (0.96/0.93) and median (0.97/0.94).

® The Eckhardt method is the most suitable and reliable
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Baseflow and BFI present distinct intra-annual distribution
patterns, namely that baseflow follows the unimodal

T a o w o distribution, while BFLis in-bimodaldistribuition
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The determination coefficient (R2) 5, £t S
and efficiency coefficient (NSE) of the e = R =y
simulated and measured monthly ) va .
average runoff during the calibration ¢ A
and validation periods of the model “# =
attain values of 0.88 and 0.84, and B:
0.91 and 0.87, respectively. =
00— T 12 L, I e
P - ‘1o @ The spatial distribution of baseflow in spring and winter is generally consistent, and both the
o l,s upper Dangqu and Tongtian River exhibit higher baseflow values compared to other regions of
S .= the SRYR. In summer and autumn, the baseflow in the middle and lower reaches of the Tongtian
j " River is higher than that in other regions. The annual baseflow is relatively higher in the southern
>l 1" and eastern region of the SRYR, surpassing 100mm. In particular, the upstream of Dangqu and
il 1 downstream of Tongtian River exhibit baseflow values exceeding 180 mm.
‘; M@g@@;‘:&ﬁj&?@;;&f:iwiiw@é " @ The Dangqu River exhibits the highest BFI, followed by the Tuotuo River and the Tongtian River,
:@‘y“i@aﬁﬁwj \zwzz&,»:ib&ao«“ while the Chumal River has the lowest BFI. _
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® However, across the four seasons, these three predictors play different roles in influencing baseflow. Precipitation
makes the greatest contribution in spring and summer, followed by evapotranspiration, then temperature. In autumn,
precipitation and temperature make the greatest two contributions, followed by evapotranspiration. In winter,
temperature makes the greatest contribution, followed by evapotranspiration. The contribution of precipitation is so
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Temporal variation U T
The glacier/permafrost melting water and :- e | g | g S

snowmelt  associated  with increasing :. .. N ol I 1
temperature, in addition to the increasing - .. &)
precipitation inputs, drive the increase in | " 0 i I N - [ 1|11 1L
groundwater discharge, albeit under the T repeiem  Tewewmeo  Seponmpimm var
negative influence of evapotranspiration and [« | e |

ECPs implementations. The variation of . L g | Wi
baseflow is the result of the combined :" et

effect of the aforementioned factors. | b el o 0T e ™ e | £ H
Spatial heterogeneity e T T e e L

Groundwater level (mm)

Higher baseflow and BFI values are observed in the

upstream region of Dangqu, attributed to the«
hydrological contribution of the Chadan Wetland 7%
within the SRYR. In contrast, lower baseflow and BFI

values are prevalent in the upstream of the Chumal b.
River. This phenomenon is attributed to the —
predomlnance of barren land cover in this reglon
resulting in  restricted baseflow generation:

Additionally, distinct zones with higher baseflow
values are identified in the upper reaches of the
Tongtian River and Dangqu River. This pattern is
plausibly linked to the extensive occurrence of
seasonal frozen soil within these geographical sectors.
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® Our results highlight the critical roles of both precipitation and temperature.
They also indicate that climate change, rather than ecological conservation
programs (ECPs), dominated the variation in baseflow in the SRYR. In brief,
temporal trends in baseflow can be generally explained by an increase in
temperature, the superimposition of which is likely to become more
influential on precipitation in the future.

® Spatially, the variation patterns of baseflow and BFI values have distinct
watershed characteristics in the SRYR. Overall, the Dangqu River
demonstrats the highest BFI, the Tongtian River displays the largest
baseflow, and the Chumal River exhibits the lowest baseflow and BFI.

® The rise in baseflow suggests the groundwater storage is increasing, but that is
not necessarily a good thing. The observed increase in temperature in recent |
years poses a much bigger crisis to the stability of the Asian water tower, in &=
conjunction with the ongoing glacier retreat and permafrost degradation. .
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please welcome the criticisms !
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