

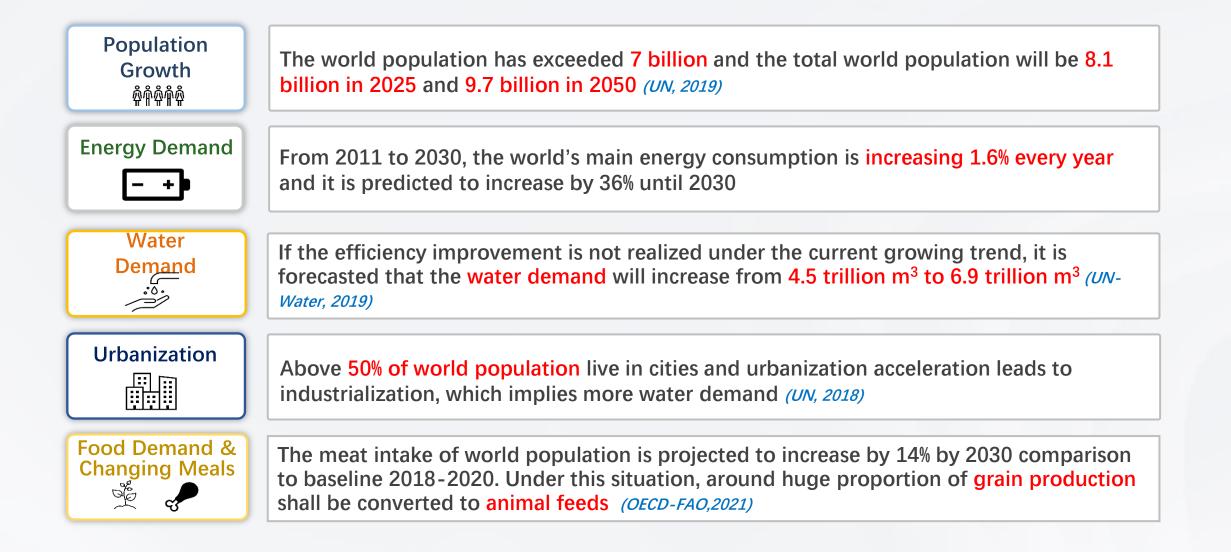
유네스코 물 안보 및 지속가능 물 관리

unesco

The Effect of Urban Conditions, External Influences, and O&M Efficiency on Urban Water System from the Nexus

Seo Hyung Choi **UNESCO i-WSSM**

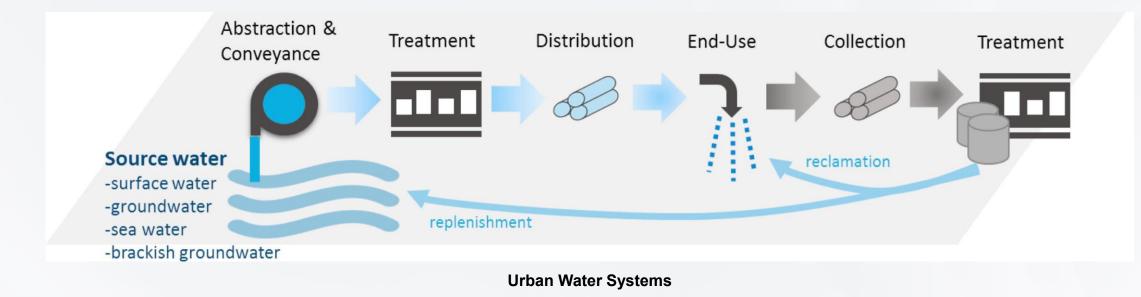
第18届 世界水资源大会 人与自然和谐共生


Introduction

Methodology

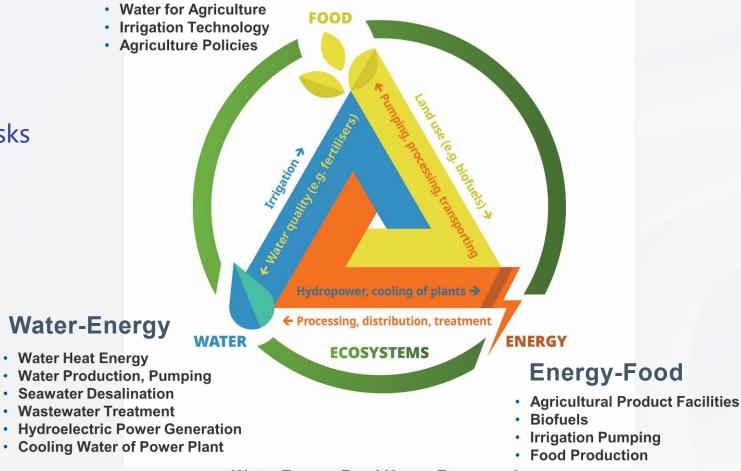
Results

Current Challenges



Urban Water System

- Urban water system is an artificial process for using water resources in urban areas
- Even though, the close and complex relationship between water and energy exist, conventional water and energy management in urban area tends to focus on individual management, rather than a holistic approach
- A comprehensive approach to analyze the relationship between water and energy is essential



The Nexus Approach

- The Nexus approach analyzes interlinkages, synergies, and trade-offs between sectors
- It aims to identify solutions, fostering water-energy-food security and efficiency, and reducing impacts and risks on water-dependent ecosystems

Water-Food

Water-Energy-Food Nexus Framework

Introduction

Methodology

Results

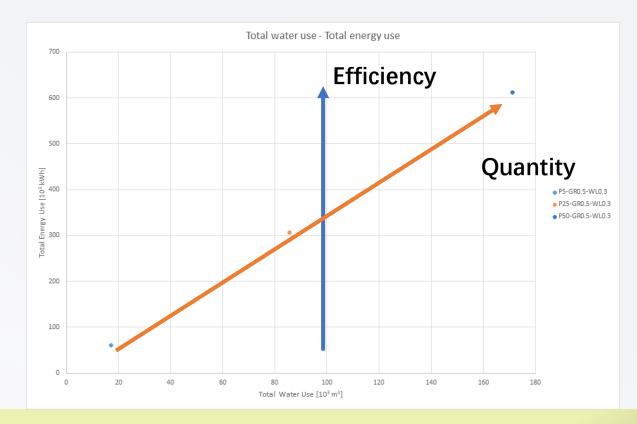
Research Objectives

To establish guidelines, strategy, and action plan for urban water system

- Build an energy intensity matrix by urban water system process
- Analysis on energy intensity by water (total water use, revenue water, real water)
- Water-Energy Nexus assessment and guidelines
- Analysis of Water-Energy Nexus by urban conditions, external influences, and o&m efficiency on urban water system

- Model used: system dynamics
- Data used: Energy intensity of urban water system
 - Desalination, abstraction (groundwater), conveyance, water treatment, transmission & distribution, reuse, wastewater collection, wastewater treatment, discharge

Urban Water System Variables


- ✓ External impact variables: population, groundwater usage, energy intensity condition
- ✓ Operation and management variables: lpcd, energy intensity condition, water loss rate

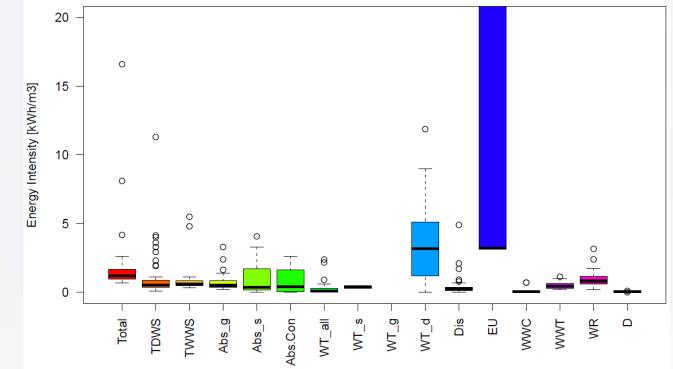
Methodology

Energy intensity trends can be diagnosed

- Efficiency: same water use, less energy use
- Quantity: both water and energy use increase

Variables	Total water El	Revenue water El	Real water El			
Population ↑	Quantity (↑)	Quantity (↑)	Quantity (↑)			
Abstraction ↑	Efficiency (↑)	Efficiency (↑)	Efficiency (↑)			
Energy Intensity Condition ↑	Efficiency (↑)	Efficiency (↑)	Efficiency (↑)			
Water Loss ↑	Quantity (↑), Efficiency (↓)	Efficiency (nearly ↑)	Efficiency (↑)			

Introduction


Methodology

Results

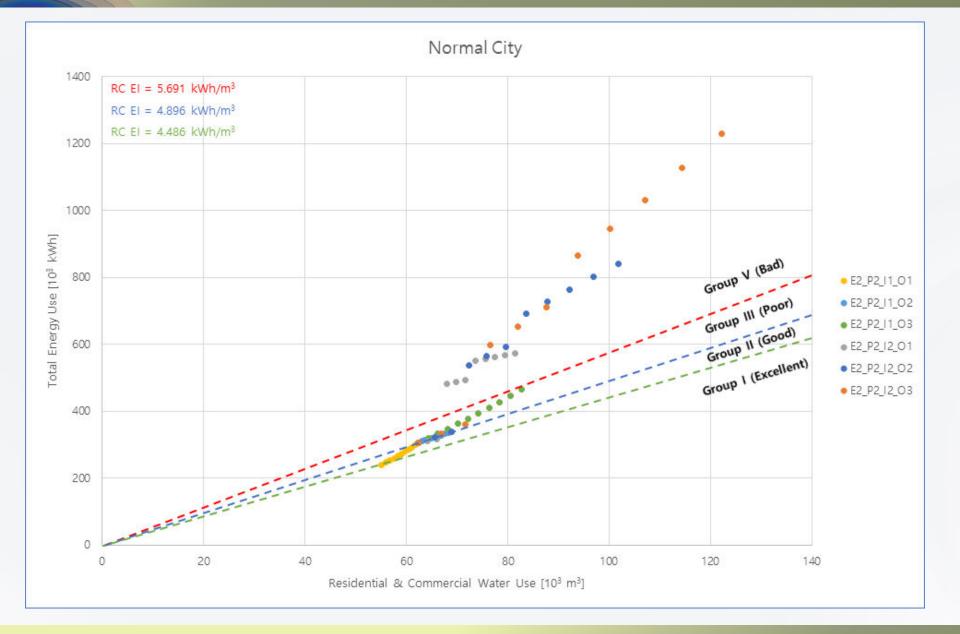
Results – Energy Intensity Matrix

- Developed energy intensity matrix by urban water system by using 367 literatures
- The energy intensity median value of total water system, water treatment system, and wastewater system are 1.210 kWh/m³, 0.519 kWh/m³, 0.580 kWh/m³ respectively
- End use > desalination & reuse > water treatment & wastewater treatment, conveyance > wastewater collection & discharge

Results – Energy Intensity Matrix

Total		Abs.	Con.	Abs. Con	WT			Dis.	EU	wwc	WWT	WR	D			
Category	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	wwc	wwT	WR	D
Mean	2.334	1.029	1.024	0.822	0.910	0.820	0.294	0.382	-	11.963	0.439	54.491	0.181	0.494	1.072	0.053
Errors	0.728	0.212	0.277	0.178	0.211	0.185	0.099	-	-	4.691	0.110	51.297	0.080	0.044	0.238	0.014
Median	1.210	0.519	0.580	0.505	0.370	0.396	0.090	0.382	-	3.170	0.255	3.211	0.061	0.440	0.820	0.054
Mode	1.155	0.850	0.840	0.415	0.832	0.040	0.029	-	-	3.170	0.100	-	0.710	0.410	0.820	0.055
1 st quartile	0.865	0.357	0.470	0.372	0.150	0.048	0.029	-	-	1.197	0.136	3.161	0.037	0.300	0.588	0.038
3 rd quartile	1.690	0.903	0.840	0.874	1.813	1.636	0.298	-	-	5.450	0.385	157.10	0.140	0.711	1.445	0.068
Std. Dev.	3.492	1.646	1.327	0.794	1.099	0.927	0.560	-	-	30.761	0.762	102.59	0.264	0.246	0.860	0.034
Variation	12.191	2.708	1.760	0.630	1.208	0.860	0.314	-	-	946.22	0.580	10525	0.070	0.060	0.739	0.001
Kurtosis	13.661	26.006	8.237	4.636	1.513	-0.647	9.415	-	-	12.528	25.992	4.000	1.853	0.495	1.969	2.448
Skewness	3.584	4.594	3.008	2.197	1.448	0.968	3.098	-	-	3.595	4.764	2.000	1.846	1.037	1.608	-0.022
Range	15.900	11.210	5.190	3.110	4.070	2.624	2.385	0.000	0.000	142.49	4.890	205.22	0.689	0.942	2.947	0.106
Minimum	0.700	0.090	0.310	0.190	0.000	0.000	0.005	0.382	0.000	0.015	0.010	3.160	0.022	0.198	0.215	0.000
Maximum	16.600	11.300	5.500	3.300	4.070	2.624	2.390	0.382	0.000	142.50	4.900	208.38	0.710	1.140	3.162	0.106
Observations	23	60	23	20	27	25	32	1	0	43	48	4	11	31	13	6

Results - Guidelines



- We distinguished urban water system by Excellent, Good, Poor, and Bad according to energy intensity matrix
- The guideline (classification) can be a useful benchmarking tool for determining the level of the city by comparing it with other cities in terms of the efficiency of the Nexus perspective of the urban water system

	Total water energy	Revenue water energy	Real water energy			
	intensity	intensity	intensity			
Excellent	~ 3.274	~ 4.678	~ 4.486			
Good	3.274 ~ 3.574	4.678 ~ 5.106	4.486 ~ 4.896			
Poor	3.574 ~ 4.154	5.106 ~ 5.935	4.896 ~ 5.691			
Bad	4.154 ~	5.935 ~	5.691~			

Results – Scenario Analysis

Introduction

Methodology

• Results

- With energy intensity matrix and developed guidelines, we were able to analyze resources usage in urban Water-Energy Nexus perspective
- The results shows how external impact variables and operation & management variables affect to energy intensity in urban water system
- This study allows to provide scientific evidence on energy intensity to support policy-makers and researchers

International Centre for Water Security and Sustainable Management 유네스코 물 안보 및 지속가능 물 관리 국제연구교육센터

Thank You

seohyung.choi@unesco-iwssm.org