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1. Importance & Challenge
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Paleovalley aquifer:

® Regulating >60% portable groundwater distribution ‘I =

® Storing >40% uranium resources (i.e. sandstone-type uranium)

® Avenue of critical elements transport and exchange S— ted to modern river




1. Importance & Challenge

Plan view and profile of paleovalley Real status Simulated case

Non-Gaussian and connective feature; traditional method with few data support failed
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Multi-supportive Data, Innovative Techniques
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1. Importance & Challenge

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve “ t Y
as they are exposed to more data over time n f g“ oE

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Explosive data 2> Artificial intelligence 2> Wide application

Data & Al: Providing rare opportunity for subsurface imaging




1. Importance & Challenge

I Artficial Surfaces ;
[ Cuttivated Terrestrial Vegetated: Herbaceous
[ Natural Aquatic Vegetated: Herbaceous

I Natural Aquatic Vegetated: Woody

[ Natural Surfaces

I Natural Terrestrial Vegetated: Herbaceous




2. Method & application
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2. Method & application
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Sub3DNet. A deep learning model for subsurface imaging, by data mining and transferring

Data-rich region === Data-poor region




2. Method & application
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() ==) Convolution
==) Deconvolution

1(200x200x10) Size of image (3D array)

(64) Number of images in each layer

Minimize Kullback_leiber divergence
Minimize mean square error
Minimize {-log[D(simulated)]}
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2. Method & application
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® Sub3DNet: DEM to 3D Paleovalley

® DEM everywhere /
® AEM-paleovalley somewhere ® Prediction of 3D paleovalley by DEM




2. Method & application
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Validation zone

O Loss of training: < 0.1

0 Loss of validation: < 0.1 at over 90%

domain

(a) Normalized MrVBF for training

(b) Normalized MrVBF for validation
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2. Method & application

N D
G/

40700'S

o)

1 ’
.
M
: | Y
\Great Victoria Dese
it
: 3 I
E

[
Q
©)
L

O

o0
O
L

0 25 50 100km

Scale
H‘O.S

0.6
r0.4

0.2

North Victoria desert application and downhole test

Testing with downhole logs, accuracy: 78.5%




2. Method & application

Application to Daging, China:

JETAA,

® Input: 3D seismicity amplitude
® Output: 3D paleovalley and uranium deposit

® Paleovalley accuracy: 83%, uranium accuracy: 78%

® Generating a probability map of uranium
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3. Conclusion & Outlook

Sub3DNet: subsurface imaging in remote zone featuring limited data, by data mining and

information transferring; success in local scale information transferring

1000 km
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