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More extreme events under climate change
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Increased flooding in a warming climate?

Global warming will result in increased floods because:

» The air’s water holding capacity increases by ~7%/-C
 Warmer ocean evaporates more water into the air

nature climate change
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FLOOD TRENDS

Not higher but more often

Heavy precipitation has increased worldwide, but the effect of this on flood magnitude has been difficult to
pinpoint. An alternative approach to analysing records shows that, in the central United States, floods have become
more frequent but not larger.

Robert M. Hirsch and Stacey A. Archfield

letters to nature

No upward trends in the occurrence
of extreme floods in central Europe

Manfred Mudelsee'*, Michael Borngen', Gerd Tetzlaff’
& Uwe Griinewald”
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Increased flooding in a warming climate?

A positive response of rainstorm-induced floods to extreme precipitation increase

50 T T T T T T

45

40

(mm/d)
5]

Q
=

N N
o ol

—i

Annual maximum
(@)]

-y
o

| Trend = 0.10mm/d/dec (0.92%/dec)
p=0.11

1 1 1 | 1 1

KSR RPN PN

45
40
135
=
30 E
oL
25 £
|
E
20 &
=
15 3
=
(=
<
10

Annual maximum Q (mm/df)

d RMF e  ES-MF
0————— 3os
..} 021 mm/ididec - - - - - | ... | 0.07mm/d/dec - - - - - .
25} 1.55 %/dec 25} 0.69 %/dec

p<0.01 | p=0.13
20t - 20}

15} »

101 )R

5l g

0 S O OO o S
\03” .é\ RS °,°’,,9°,,,'\ ,\0,‘” ,\o, ,9 \o?’ 0@
f sSsMMF  _ 9 RSMF
ol SHME 0 REME

-0.12 mm/d/dec . .| -0.11 mm/d/dec

25| -1.56 %/dec - 25| -0.95 %/dec - 1B
O pDOL, . ..o P03 5
20t 20t
15- :”' e o
I 5 5
QQ S S 0.5”0 lQ.gEQQQ
¢ N
Y Cb“’,é\ QO’Q,QQ S \q(o\qb\‘;’\'@%@q SN




Rainfall trend amplified in runoff

Murray River Basin inflows

Rainfall trend (1950 to present)
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Potential drivers and hydrological responses

Declining trend in water availability in the far south-west and far south-east .....

| Perth Reservoir Inflows
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Millennium Drought : attribution analysis
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Change in dominant processes (hydrologic non-stationarity)




Stationarity assumption

e Stationarity means that the statistical properties of hydrologic variables in the
future will be similar to the past.
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Stationarity Is Dead:
Whither Water Management?

P.C. D. Milly,"™ Julio Betancourt,2 Malin Falkenmark,® Robert M. Hirsch,* Zbigniew W.
Kundzewicz,” Dennis P. Lettenmaier® Ronald J. Stouffer’
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Milly et al., 2008, Science




Hydrologic non-stationarity: Victorian examples
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Hydrologic non-stationarity: Victorian examples

(c) map of shifted catchments
(data to 2008; Saft et al., 2015)
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(d) post-drought recovery, Victoria
(Peterson et al., 2021)
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Fowler et al., (2022), HESS



Nonstationarity: from detection to management

Symptoms Detection Drivers ~ Attribution Management

e Magnitude e Data quality and e Regression Climate ¢ Exploratory data * Engineering design
* Frequency homogeneity ¢ Pooled methods e Land cover analysis ¢ Climate models
e Timing * Record length and e Synthetic time seriel ¢ Water management * Empirical e Hybrid approaches
completeness * Change points e Feedbacks * Simulation based e Validity of models
e Circular statistics * Compound drivers  * Event attribution
space
Global
Continental
Regional
Large
catchment
Small
catchment
» Tlime
day year 10 100 10 000 100 000
years years years years

Slater et al (2021), HESS



Hydrologic non-stationarity: diagnostic analysis
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Hydrologic non-stationarity: causality analysis

CAUSES
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Hydrologic non-stationarity: implications
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How to reduce uncertainty in future runoff projection ?
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How to reduce the effect of non-stationarity on
runoff projection ?

> Better objective function?

Water Resources Research

RESEARCH ARTICLE Improved Rainfall-Runoff Calibration for Drying Climate: Choice

10.1029/2017WR022466 of Objecti’\,e Function
Key Points: Keirnan Fowler' ), Murray Peel' ), Andrew Western' (), and Lu Zhang?
« “Least squares” approaches should
not be used to calibrate models for a 'Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC, Australia, ’Land and Water, CSIRO,

drying:climate o Canberra, ACT, Australia
« Sum-of-absolute-error calibration

We recommend future studies to avoid least squares approaches (e.g., NSE or KGE)
and adopt the Refined Index of Agreement or Split KGE.

Fowler et al., (2018), WRR



How to reduce uncertainty in future runoff projection ?

> Pareto front?

Coverage Diagnosis notes
(a)
- g, i EL Parameter sets that meet acceptance
____________ 1.9 S s Sih s
e thresholds do exist within the model structure.
- In this case, the priority is improving the
Capable of 532 calibration method, so that when the DSST is
ey | repeated a more suitable parameter set is
periods, with the | T identified.
same parameter set E eval

(b) . The model structure is flexible (it can fit data it
| is calibrated to) but not transferable (good
Vet - i parameter sets in one period are poor in
""" By VT & others). Focus on model structure: given the
Capable of 4 absence of performance problems in each
good perform- ® R B e o & 2
anceoverboh L period individually, it is relatively less likely
periods, butnot B, (but not impossible) that data errors are the
with the same H .
parameterset | I salient cause.

Fowler et al., (2018), WRR



Considering Pareto front

A Traditional calibration
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Effect of non-stationarity on future runoff projection
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How to reduce uncertainty in future runoff projection ?

» Improve hydrological model

: Rainfall
rd

////;?

IMPERVIOUS RUNOFF

Sacramento

DIRECT

RUNOFF

UNIT
HYDROGRAPH
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BASEFLOW LOSS

CHANNEL LOSS

ROUTING

Effect of elevated CO,

Surface-groundwater
linkage

Differential effect of soil
moisture on runoff and ET




Summary :

* The Murray-Darling Basin has experienced increased
extreme events, significantly affecting ecosystem health
and environment.

« Extreme events such as droughts can result in
hydrological non-stationarity increasing uncertainty in
future runoff projection.

« Current hydrological models need to be improved in
order to provide more robust future runoff projection.







