

Potential Evaporation and the Complementary Relationship

Yuting Yang

Department of Hydraulic Engineering, Tsinghua University

12/9/2023

Acknowledgment: Zhuoyi Tu, Michael Roderick and Tim

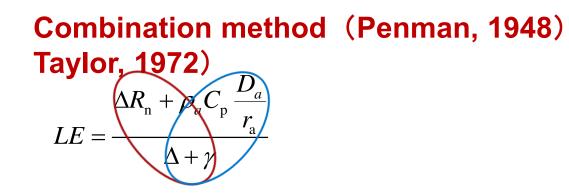
Evaporation (E) is a crucial linkage between water and energy

(Oki & Kanae, 2006; Trenberth et al., cycles 2009) Incoming Outgoing **Reflected Solar** 239 Total terrestria 341 Evaporation Water vapo Radiation Solar Longwave precipitation Water vapo over ocean over land Radiation Radiation 101.9 W m⁻² over sea 436.5 3 341.3 W m⁻² 238.5 W m⁻¹ Net water vapor Snowfall Rainfal 10 flux transport 45.5 **Reflected** by Clouds and Atmospheric Atmosphere 40 Window Glaciers and sno Emitted by / 24,064 169 Atmosphere Greenhouse Total terrestria Absorbed by Gases vapotranspiration 65.5 Latent 21 📕 31 Wetland (0.: Grassland (48.9) 7.6 11.6 Precipitation 15.3 Cropland (15.6) 40 333 over ocean 1.3 2.4 Reflected by 356 6.4 11.7 391 Back Surface Others (26.4 Radiation 175 396 80 333 Surface Sea 1,338,000 Thermals Evapo-Groundwater 23,400 Absorbed by Radiation transpiration Surface Flux, 10³ km³/y Net absorbed Storage, 103 km 0.9 (Oki & Kanae, 2006) (Trenberth et al., 2009 Wm () Area 10⁶ km² Water Budget $P \neq E$ $R + \Delta S$ $R_{\rm n} = (LE) + H + G$ Energy Budget Consuming 82% of the The 2nd largest water flux energy gained on the in the terrestrial water cycle Earth's surface

Potential Evaporation is a key concept to estimate E

• Actual Evaporation :

The evaporation under natural conditions


• Potential Evaporation :

The evaporation occurs with unlimited water supply

Models for estimating the potential evaporation

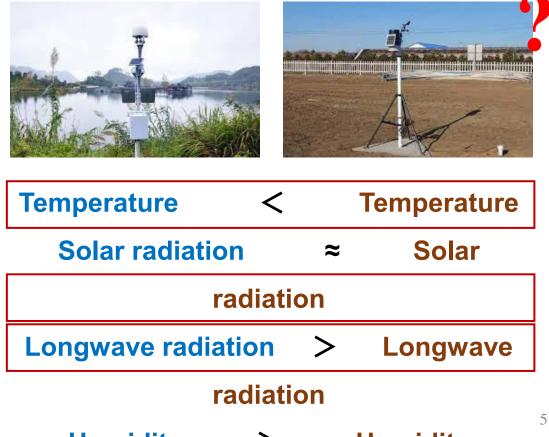
areodynamic term + radiative term

Coupling the aerodynamic and radiative term, it is considered to be a more r e l i a b l e m o d e l. Energy-based method (Priestley & $LE = \alpha \underbrace{\Delta}_{\Delta + \gamma} R_n$ equilibrium evaporation minimal advection

minimal areodynamic term + radiative term

Simplifying aerodynamic term with minimum advection,

it has good performance in $E_{\rm P}$ estimation



Problems of classic potential evaporation

Protectal evaporation: The evaporation that would occur when the surface is • saturated

Priestley-Taylor
$$LE = \alpha \frac{\Delta}{\Delta + \gamma} R_n$$

Penman $LE = \frac{\Delta R_n + \rho_a C_p \frac{D_a}{r_a}}{\Delta + \gamma}$

Meteorological forcing variables observed in real conditions do not necessarily represent that hypothetical measured over wet surfaces

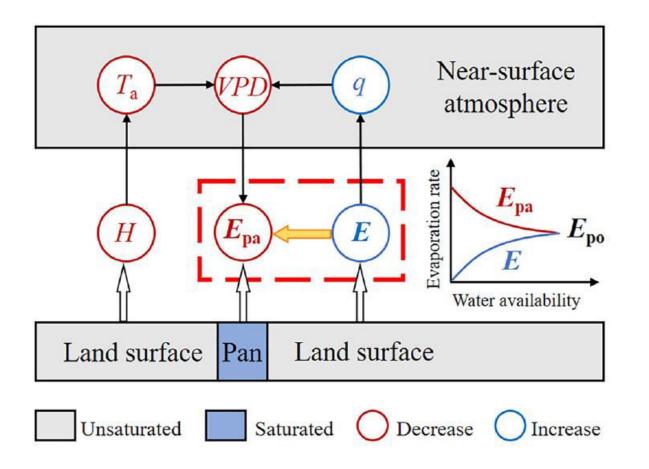
Problems of classic potential evaporation (Brutsaert, 2015)

models Potential Evaporation (E_{po})

(large) surface is wet and the surrounding air is humid

Apparent Potential Evaporation (E_{pa})

(small) surface is wet but the surrounding air is dry



		A de la
Temperature	<	Temperature
Solar radiation	*	Solar
radiation		
Longwave radiation	1 >	Longwave
radiation		

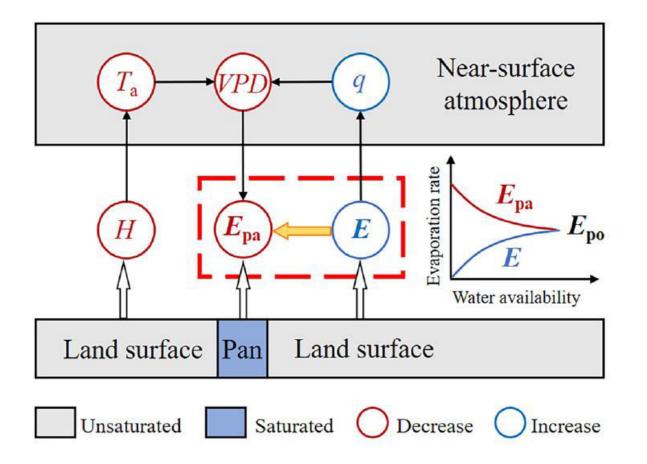
The Complementary

(Bouchet, 1963)

The CR provides a framework for estimating *E* with basic meteorological observations based on:

 $E = f(E_{pa}, E_{po})$

Apparent Potential Evaporation (E_{pa}) :


(small) surface is wet but the surrounding air is dry

Potential Evaporation (E_{po}):

(large) surface is wet and the surrounding air is humid

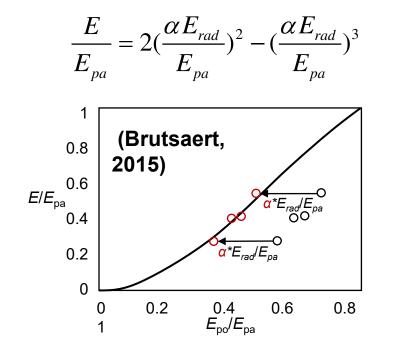
The Complementary

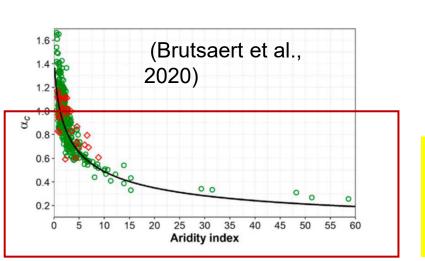
(Bouchet, 1963)

Apparent Potential Evaporation (E_{pa}) :(small) surface is wet but the surrounding air is dryPan observation/ Penman equation

Potential Evaporation (E_{po}) :

(large) surface is wet and the surrounding air is humid


Meteorologicalvariablesobserved in real conditions donot necessarily represent thatmeasured over wet surfaces

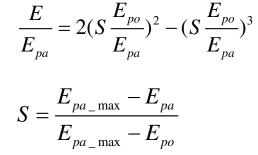

Debated!

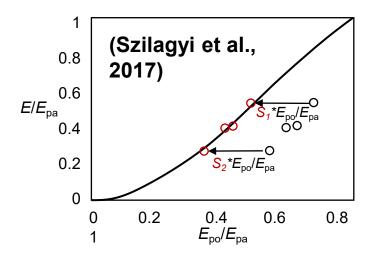
Problems of *E*_{po} estimation in the CR

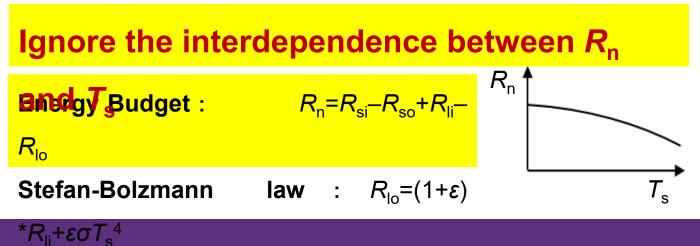
Polynomial CR (Brutsaert, 2015)

 $E_{po} = \alpha \frac{\Delta}{\Delta + \nu} (R_n - G) = \alpha * E_{rad}$

Problem:(Phillip, 1987)Fitted α lower than 1α should be higherthem 1


9

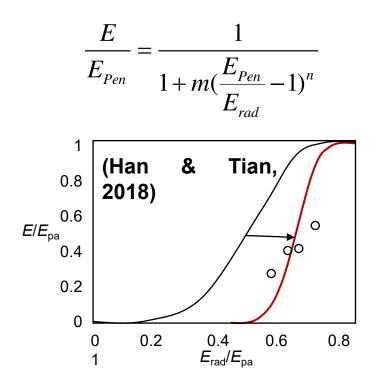

inconsistency!


Problems of *E*_{po} estimation in

• **these and CR (Szilagyi et al., 2017**) $\alpha \frac{\Delta(T_{ws})}{\Delta(T_{ws}) + \gamma}$ Derive the wet surface

Problem:

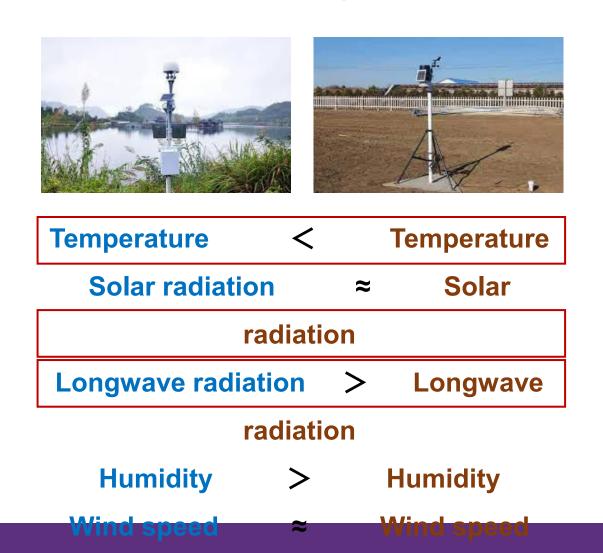
10


Assume a constant R_n

 $\beta = \frac{H}{LE} \approx \frac{R_{\rm n} - G - LE_{\rm P_PO}}{LE_{\rm P_PO}} \approx \gamma \frac{T_{\rm ws} - T_{\rm a}}{e_{\rm s}(T_{\rm ws}) - e(T_{\rm a})}$

Problems of *E*_{po} estimation in the CR

• Sigmoid CR (Han & Tian, 2018)


Problem:

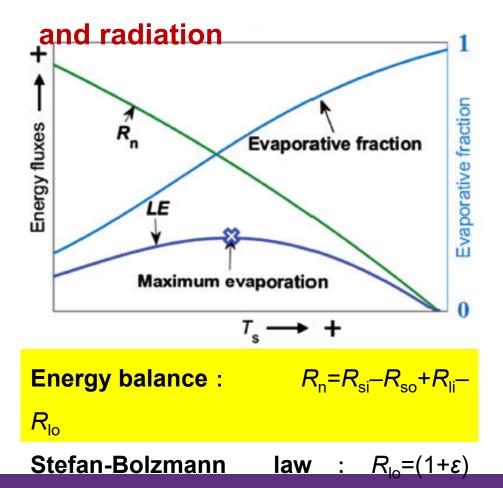
- Abandon the concept of Epa and Epo and has a vague physical interpretation
- Require calibration and prevents application over regions without

prior knowledge

Problems of *E*_{po} estimation in the CR

Key points:

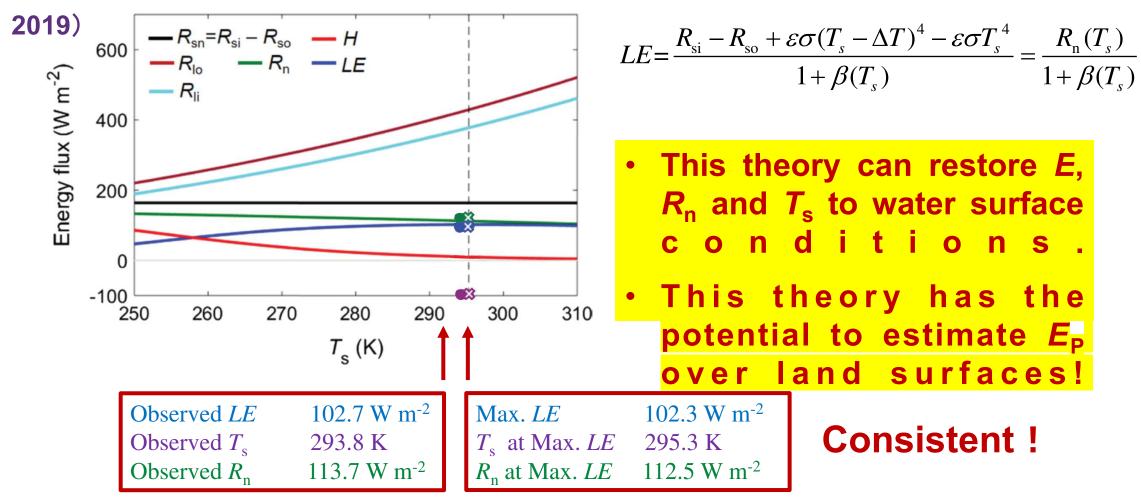
- Unreasonable estimations
 - of E_{po} hinder the development of CR
- How to estimate *E*_{po}
 following the definition


to wet conditions)

(restore relevant variables

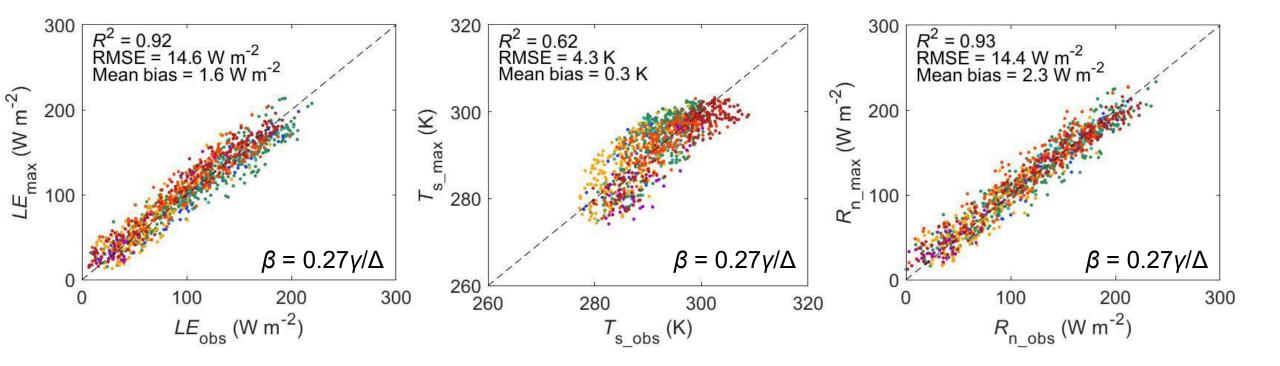
The maximum evaporation theory (Yang & Roderick,

Acknowledging the inter-dependence between evaporation, surface temperature

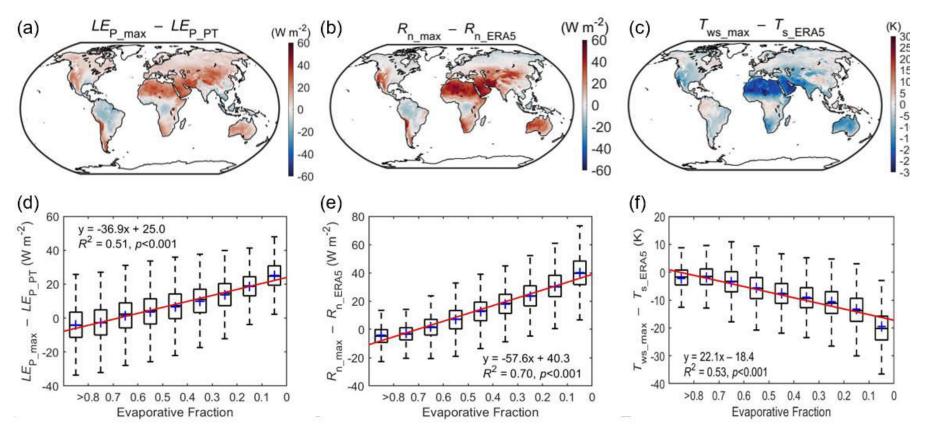

Energy balance: $R_n - G = H + LE$ Bowen ratio: $\beta = H / LE$ E_P formulation: $LE = (R_n - G) * 1 / (1 + \beta)$

 $T_{s} \uparrow R_{I} = 1/(1+\beta) LE_{max}$

*LE*_{max} naturally emerges from the coupling of *R*_n-*T*_s-*E LE* = $\frac{R_{si} - R_{so} + \varepsilon \sigma (T_s - \Delta T)^4 - \varepsilon \sigma T_s^4}{1 + \beta (T_s)} = \frac{R_n (T_s)}{1 + \beta (T_s)}$



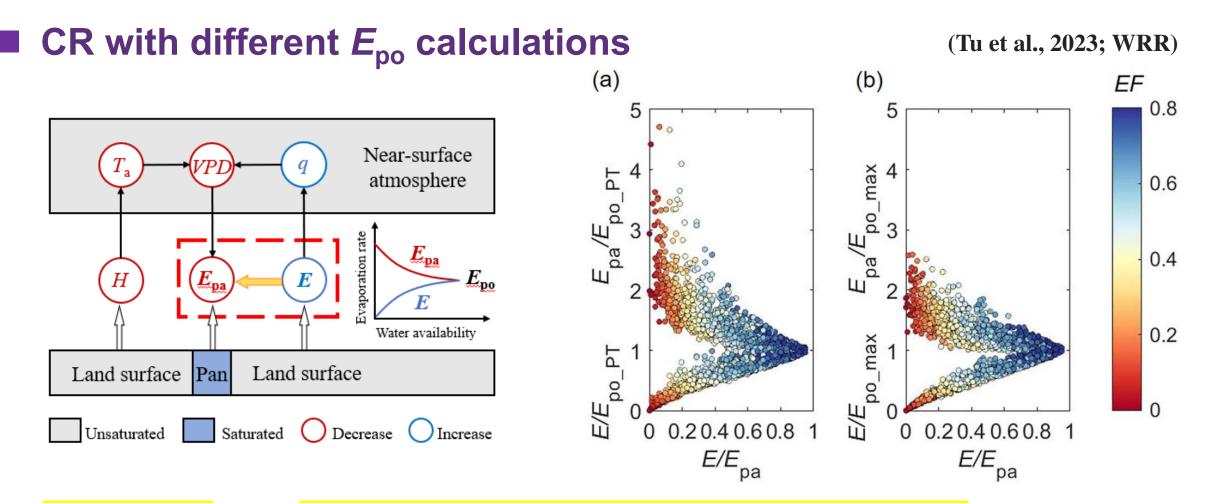
The maximum evaporation theory (Yang & Roderick,


Validation of the maximum evaporation method over landesurfaccess)

The maximum evaporation method can restore *E*, T_s and R_n to wet conditions over land surface.

E_P estimates under both wet and dry conditions (Tu & Yang, 2022; WRR)

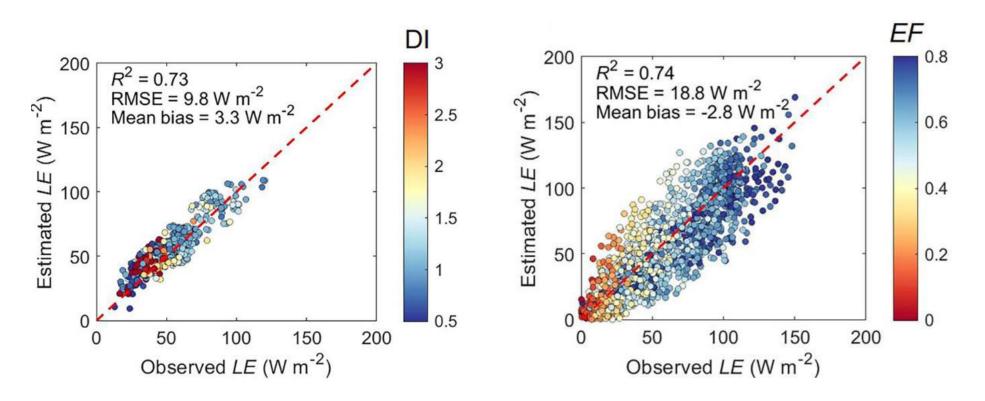
The underestimation of E_{P_PT} is caused the observed higher T_a and lower R_n under conditions.


E_P estimates under both wet and dry conditions (Tu & Yang, 2022; WRR)

 $\begin{array}{ccc} - LE & - R_{lo} \\ - R_n & - R_{li} \end{array}$ Real condition Hypothetical wet condition --- Fixed R_n under real condition \bullet Hypothetical wet condition with fixed R_n Energy fluxes Observed R_n R_{n_ws} $\sim E_{\rm p}$ assessed with observed $T_{\rm s}$ and $R_{\rm n}$ $E_{\mathbf{p}}$ $-E_{\rm p}$ assessed with observed $R_{\rm n}$ and $T_{\rm ws_{fixed Rn}}$ $T_{\rm ws}$ $T_{\rm s}$ • $Observed T_s$ $T_{\rm ws_{fixed\,Rn}}$

17

It is crucial to restore all the relevant variables (T_s, R_n) to wet conditions in estimating E_P !



Adopting *E*_{pomax} considerably reduces the asymmetry of the complementarity in CR.

New CR model with *E*_{po_max}

(Tu et al., 2023; WRR)

A physically based CR model with $E_{po_{max}}$ was validated to have good performance in *E* estimation.

Take-home messages

- The maximum evaporation method can recover the variables to a hypothetical wet condition
- Adopting E_{pomax} that conforms to the physical definition reduces the asymmetry

Thanks for your attention!

References:

Yang, Y., & Roderick, M.L. (2019). Radiation, surface temperature and evaporation over wet surfaces. *Quarterly Journal of the Royal Meteorological Society*, 1-12.

Tu, Z., & Yang, Y. (2022). On the estimation of potential evaporation under wet and dry conditions. *Water Resources Research*, 58, e2021WR031486.

Tu, Z., et al. (2022). Testing a maximum evaporation theory over saturated land: Implications for potential evaporation estimation, *Hydrology and Earth System Sciences*, 26, 1745–1754.

Yang, Y., et al. (2022). Reply to Comment on "On the Estimation of Potential Evaporation Under Wet and Dry Conditions" by Jozsef Szilagyi, *Water Resources Research*, 58, e2022WR033674.

Tu, Z., et al. (2023). Potential evaporation and the complementary relationship, Water Resources Research, e2022WR033763.

Tu, Z., et al. (2023). Reply to Comment on "Potential evaporation and the complementary relationship" by Jozsef Szilagyi, *Water Resources Research*, 58, 2023WR035150.