

The Flood Elasticity under Changing Conditions: An Application in a Tropical Monsoon Basin of Thailand

Dr. Baoxn Zhao Prof. Dawen Yang

Sept. 12 2023

General Institute of water resources and hydropower planning and design (GTWP)

Tsinghua University

- Defination: the relative response of runoff to the relative change of precipitation;
- Schaake et al. (1990): runoff elasticity estimates the relationship between rainfall and runoff annually;
- Breinl et al. (2021): storm-flood elasticity derived from
 frequency curves estimates the relationship between daily
 storm and flood peaks;
- Current storm-flood elasticity analyses normally regard the relationship as constant regardless of changing conditions.

- C-C Relationship: a 1°C increase in temperature leads to a resultant 7% increase in precipitation extremes;
- Intense studies have predicted more and stronger precipitation extremes across the world due to global warming (Donat et al., 2016, NCC; Thackeray et al., 2022, NCC);
- The amplified flood magnitude in the future is predicted in most parts of the world, while the contribution of climate change to flood amplification is the strongest in Southeast Asia (Winsemius et al., 2015, NCC)

- Current elasticity analyses ignore changing conditions:
 - > The frequency curves should tell changing stories.
 - ✓ Time-varying frequency curves via GAMLSS!
- Analyses on the future flood changes:
 - ➤ The changes of flood peaks should be quantified.
 - ✓ Time-varying flood frequency curves show!
 - ➤ The roles of different factors should be clarified.
 - ✓ Elasticity analyses on different factors!

Storm-Flood Elasticity: Stable Case

2.METHODOLOGY

Storm-Flood-Frequency-Equivalence:

- Suppose storm and the resultant flood are at the same frequency.
- Suppose exceedance probability decrease from x₀ to x₁, design storm rise from P₀ to P₁, design flood rise from Q₀ to Q₁, correspondingly.

$$\varepsilon_0(x_0) = \frac{\frac{Q_1 - Q_0}{Q_0}}{\frac{P_1 - P_0}{P_0}} = \frac{P_0 f(P_0)}{Q_0 g(Q_0)}$$

$$\frac{\Delta Q}{Q} = \varepsilon_0 \frac{\Delta P}{P}$$

$$f(P) = \frac{\partial F}{\partial P} \quad g(Q) = \frac{\partial G}{\partial Q}$$
PDF Function
CDF Function
$$x = F(P) \qquad x = G(Q)$$

$$P = M(x) \qquad Q = N(x)$$

Inverse Function

- Time-varying frequency curves:
 - Covariates carrying information related to temporal variation should be employed in the frequency analyses.
 - ✓ Dew Point (*DP*): strongly positively correlated to precipitation extremes and flood peaks as indicated by C-C relationship (Ali et al., 2018; Worawiwat el al., 2021).
 - ✓ Forest Cover (*FC*): strongly negatively correlated to flood peaks due to the hydrological restoration function of forest (Kim et al., 2019).

GAMLSS:

Regard distribution parameters as time-varying, herein the parameters change according to *DP* and *FC*.

$$P \sim GEV(\mu_{Pt}, \sigma_{Pt}, \xi_P) \qquad \mu_{Pt} = \alpha_{P0} + \alpha_{P1}DP_t \\ \sigma_{Pt} = \beta_{P0} + \beta_{P1}DP_t$$

$$Q \sim GEV(\mu_{Qt}, \sigma_{Qt}, \xi_Q) \qquad \qquad \mu_{Qt} = \alpha_{Q0} + \alpha_{Q1}DP_t + \alpha_{Q2}FC_t$$
$$\sigma_{Qt} = \beta_{Q0} + \beta_{Q1}DP_t + \beta_{Q2}FC_t$$

Time-Varying Flood Elasticity

frequency curves shift from the red one to the blue one.

Study Region: UCPRB

Variable	Temporal resolution	Spatial resolution	Time period available	Source
Runoff	Daily	/	1981-2014	Royal Irrigation Department
historical values	s: mainly observ	rations /	2015-2099	Yang et al. (2023)
used for Precipitation	r model setup Daily	/	1981-2014	Thailand Meteorological Department
future values:	from CMIP6 a	nd 2.5 km	2015-2099	Yang et al. (2023)
hydrological mode Relative Humidity	els (Yang et al. 2 Daily	2023) /	1981-2014	Thailand Meteorological Department
used for mo	del validation a	and 2.5 km	2015-2099	Yang et al. (2023)
pr Mean Temperature	ediction Daily	/	1981-2014	Thailand Meteorological Department
		2.5 km	2015-2099	Yang et al. (2023)
DEM	/	90 m	/	HydroSHEDS
Landuse	Annual	100 m	1981-2014	Zhao et al. (2022)
Land use	Annual	100 111	2015-2099	Yang et al. (2023)

3.CASE STUDY

Storm and flood events are captured using the **Annual Maximum** method. The parameters in the GAMLSS model are then estimated using **MCMC**.

- > The GoF is quantified using Anderson-Darling test.
- \blacktriangleright The p-values are all larger than 0.05, so the models are accepted.

$P \sim GEV(\mu_{Pt}, \sigma_{Pt}, \xi_P)$	μ_{Pt}	=	α_{P0} -	$\vdash \alpha_{P1} DP_t$
	σ_{Pt}	=	β_{P0} -	$-\beta_{P1}DP_t$

	α_{P0}	α_{P1}	β_{P0}	β_{P1}	p-value
Ping	28.99	3.24	7.60	2.91	0.967
Wang	27.95	5.50	6.24	1.72	0.686
Yom	28.73	7.98	10.51	2.71	0.738
Nan	26.06	9.49	10.74	3.71	0.742

parameters in storm distribution

$Q \sim GEV(\mu_{Qt}, \sigma_{Qt}, \xi_Q)$	μ_{Qt}	$= \alpha_{Q0}$	+ 0	$\alpha_{Q1}DP_t$	+ ($\alpha_{Q2}F0$	C_t
	σ_{Qt}	$=\beta_{Q0}$	+ /	$B_{Q1}DP_t$	+ /	$\beta_{Q2}FC$	't

	$lpha_{Q0}$	α_{Q1}	α_{Q2}	eta_{Q0}	β_{Q1}	β_{Q2}	p-value
Ping	2.99	2.19	-0.48	1.41	0.10	-0.11	0.702
Wang	2.31	2.14	-0.25	1.80	0.05	-0.43	0.996
Yom	3.02	1.99	-0.40	2.38	0.26	-0.58	0.970
Nan	6.97	3.40	-1.00	4.64	0.50	-0.69	0.810

parameters in flood distribution

- \blacktriangleright Future distributions can then be estimated using the *DP* and *FC* predictions.
- The future is divided into 3 periods accordingly:
- ✓ Near-Future (2026-2055) ✓ Mid-Future (2046-2075) ✓ Far-Future (2070-2099)

Result: Model Performance

3.CASE STUDY

The covariates (DP, FC), storm and flood peaks from process-based models (PBMs) in the Ping subbasin.

The future storm and flood distributions from PBMs and GAMLSS are compared using **A-D test**, and the result shows that GAMLSS captures the distributions well.

	Storm Peak (mm)				Flood Peak (CMS)					
Ping	100 50 0 1960 2000 2020 2040 2060 2100	100 50 1980 2000 2020 2040 2060 2100	100 50 1980 2000 2020 2040 2060 2080 2100	150 50 9980 2000 2020 2040 2060 2080 2100	B0 2000 1980 2000 2040 2040 2040 2040 2040 2040 20	4000 2000 Pielo 2000 2020 2040 2060 2080 2100	4000 2000 0 000 2000 2000 2000 2000 2000	4000 2000 1960 2020 2020 2040 2060 2060 2100		
Wang			60 40 20 9960 2000 2020 2040 2060 2060 2100	60 40 20 980 2000 2020 2040 2060 2080 2100	Burg 1000 1980 2000 2000 2000 2000 2000 2000 2000 2	1500 500 1000 1000 1980 2000 2020 2040 2060 2080 2100	1500 1000 500 1980 2000 2020 2040 2060 2080 2100	1500 1000 500 1980 2000 2020 2040 2060 2080 2100		
Yom	100 50 1960 2000 2020 2040 2060 2080 2100	100 50 1980 2000 2020 2040 2060 2080 2100	100 50 9 980 2000 2020 2040 2060 2080 2100	100 50 1980 2000 2020 2040 2060 2080 2100	E 1000 1980 2000 2000 2040 2060 2100	3000 2000 1000 1980 2000 2020 2040 2060 2080 2100	3000 2000 1000 1980 2000 2020 2040 2060 2080 2100	3000 2000 1000 1000 1000 1000 1000 1000		
Nan	100 50 1960 2000 2020 2040 2060 2080 2100	100 50 1980 2000 2020 2040 2060 2000 2100	100 50 1960 2000 2020 2040 2060 2100 2020 2020 2020 2040 2060 2100	100 50 1960 2000 2020 2040 2060 2000 2100 CONCESS	Her 2000 9800 2000 2000 2000 2000 2000 2000 2000	4000 4000 9800 2000 2020 2040 2060 2080 2100	6000 4000 2000 1960 2000 2020 2040 2060 2080 2100	6000 4000 2000 1980 2000 2020 2040 2080 2080 2100		
	SSP126	SSP245	SSP370	SSP585	SSP126	SSP245	SSP370	SSP585		

Result: Future Changes in Floods

- The flood peaks keep increasing till the late 21st century.
- Under the SSP585 scenario where the flood increase is the strongest, the flood increase at late 21st century can reach 47%~58%.

Result: Flood Elasticity

3.CASE STUDY

Flood Elasticity

- Positive correlation with storm and ۲ negative correlation with forest;
- Different storm-flood elasticity under ٠ stationary and nonstationary cases;
- Weaker elasticity for larger events. ٠

Contribution Analyses

Climate-change-induced flood change ↑	$\varepsilon_0 = \frac{P_0 \frac{\partial F}{\partial P}}{Q_0 \frac{\partial G}{\partial Q}}$
$\frac{\Delta Q}{Q} = \varepsilon_C \frac{\Delta P}{P} + \varepsilon_F \frac{\Delta FC}{FC}$	$\varepsilon_{C} = \frac{\frac{\partial G}{\partial DP}}{\frac{\partial F}{\partial DP}} \varepsilon_{0}$
↓ Deforestation-induced flood change	$\varepsilon_F = \frac{\frac{\partial G}{\partial DP}FC_0}{\frac{\partial F}{\partial DP}P_0}\frac{\partial M}{\partial DP}\varepsilon_0$

ε ₀	return period						
	5	10	20	50	100		
Ping	1.11	1.08	1.05	1.03	1.01		
Wang	1.67	1.53	1.43	1.33	1.28		
Yom	1.35	1.26	1.20	1.15	1.11		
Nan	1.20	1.14	1.11	1.07	1.05		

$oldsymbol{arepsilon}_{\mathcal{C}}$	return period						
	5	10	20	50	100		
Ping	2.27	1.78	1.48	1.23	1.09		
Wang	1.93	1.56	1.32	1.10	0.98		
Yom	1.36	1.19	1.08	0.98	0.92		
Nan	0.90	0.80	0.73	0.67	0.63		

$oldsymbol{arepsilon}_F$	return period						
	5	10	20	50	100		
Ping	-1.43	-1.37	-1.32	-1.27	-1.25		
Wang	-0.62	-0.61	-0.60	-0.59	-0.58		
Yom	-0.71	-0.69	-0.68	-0.67	-0.66		
Nan	-0.63	-0.60	-0.57	-0.55	-0.54		

Result: Contribution Analyses

Summary

- Flood elasticity analyses under changing conditions:
 - ✓ Employment of covariates: Enabling the predictions of future floods;
 - ✓ **Statistical model** (GAMLSS): Validated by process-based models;
 - ✓ **Flood elasticity**: Weaker for stronger events;
 - ✓ **Storm-flood elasticity**: Different values under the nonstationary case.
- Future flood peak changes in the UCPRB:
 - ✓ **Future flood:** Increasing till late 21st century;
 - ✓ Scenario: SSP585>SSP370>SSP245>SSP126;
 - ✓ **Climate change:** Increasing dominance as time flows;
 - ✓ **Deforestation**: Larger effects for stronger events.

<u>Zhao.B</u>, T. Wang, D. Yang, S. Yang, W. Lu and J. Santisirisomboon (2023), The impacts of climatic and land surface characteristics on the storm-flood relationship in a tropical monsoon basin of Thailand, *Journal of Hydrology*, 616, doi.org/10.1016/j.jhydrol.2022.128809

<u>Zhao.B</u>, T. Wang, D. Yang, S. Yang and J. Santisirisomboon, The flood elasticity under changing conditions: an application in a tropical monsoon basin of Thailand, *Weather and Climate Extremes* (Under Review)

Thanks for Your Attention!

Dr. Baoxn Zhao Prof. Dawen Yang

Sept. 12 2023

General Institute of water resources and hydropower planning and design (GTWP)

Tsinghua University