

Temporal variability of catchment storage-discharge characteristics and their driving mechanisms in cold region

Zhicheng Xu, Lei Cheng, Pan Liu, Bin Ding Changjiang River Scientific Research Institute Email: <u>xuzc@mail.crsri.cn</u>

Content

- Motivations and Issues
- Data and Methodology
- Results and Discussion
- Conclusions

Motivations and Issues

- > Storage-discharge relationship (SDR) is the description between catchment storage and baseflow
- > The pow-law SDR has been widely used in many hydrological model (e.g., TOPMODEL, VIC)

storage-discharge relationship

high-sensitive of pow-law parameter (β_e) Baseflow (or groundwater flow) in water cycle

> A deeply understanding of β_e is necessary precondition of baseflow simulation

Motivations and Issues

- > The paramter (β_e) was generally regarded as a constant
- > However, many recent studies have found time-varying β_e , espcially in the cold region

- In the cold region, What's the temporal characteristic of β_e
 - What's the mechanism of time-varying β_e

World Water Conaress

Recession analysis, proposed by Brutsaert and Nieber (1977), is an effective method for β_e [Tashie 2022 WRR; Wang 2019 WRR; Jachens 2019 HESS; Karlsen 2019 JOH]

The scale of estimated *S* from GRACE satellite too large for most catchment

In events: β_e is positively correlated with CTa (Permafrost), TWS and *P*, and negatively correlated with PET. β_e is mainly controlled by PET, followed by CTa, and slightly correlated by TWS and *P*.

> In warm period

- β_e increases in most (78%) cold catchments
- Permaforst degradation (CTa) is the foremost postive driver of β_e , followed by negative Potential evapotranspiration (PET)

Variables	Statistic Feature					Percent of
	Min	25%	50%	75%	max	catchment
$\Delta \beta_e$	-1.5	-0.1	0.1	0.3	1.3	63%
ΔΤα	0.4	0.8	1.0	1.2	1.6	100%
ΔΡΕΤ	-65.3	-9.9	-0.7	8.1	28.1	47%
ΔP	-51.2	2.8	21.4	43.0	200.6	77%
ΔTWS	-27.5	0.7	4.8	11.5	105.5	77%

Decade change of β_e , Ta, PET, P & TWS in cold region

In decade

- β_e increases in many (63%) cold catchments
- Increase of all permaforst degradation, climate wetting and water storage increase take effects on β_e increase.

The greater permafrost degradation (PD), due to more significant temperature changes in the warm season, results in a more significant β_e increase than decadal permafrost degradation

The positive effect of PD on β_e
possiblely caused by increasing
storage capacity and
underground water transfer
capacity after PD.

- > In cold region, the pow-law parameter of storage-discharge relationship (β_e) varies greatly among the recession events in 315 cold catchments, showing obvious time-varying feature
- > The β_e increases in both warm period and decade scale in most catchment, which mainly positive controlled by permafrost degradation and negative controlled by PET increase
- > The possible mechanism is permafrost degradation in the cold area under the warming climate, coupled with the increase in water storage caused by climate wettness, makes the β_e of the cold area generally increase

Appreciate for Your Listening!

第18届 世界**水资源大会**