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® The global average temperature

presents a remarkable increase
The temperature has increased
by 0.56 °C since 1990

Similarly, global precipitation
shows a growing trend
Meanwhile, the precipitation has
an evident inter-annual
fluctuation



1. Introduction

® As temperature rises and precipitation becomes more variable, changes in regional water
demand and supply are expected to increase the likelihood of water shortage for many

areas and uses, such as agriculture
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Schematic diagram of climate change and its potential impacts on water resources and agriculture in China.
Piao et al. (2010, Nature)

This work aims to investigate the impact of climate change on grain yield



1. Introduction

® Case study: Yellow River Basin

The Belt and Road

Urban Agglomeration
-

v The second longest river in China
v 5,400 km in length, 745,000 km?

v" accounts for 13% of the total cultivated area

Urban Agglomeration

v" holds only 3% of the country's water resources
v nourishes more than 150 million people with

s The Belt and Road drinking water and irrigation

Three major grain production
area

Fenhe and Weihe plains




1. Introduction

® Case study: Yellow River Basin

v' The development and utilization rate of surface water in the Yellow River Basin has
reached 86% and 71%, far exceeding the carrying capacity of water resources in the

Yellow River

v’ Climate change is increasingly challenging the security of the water resources of the basin

A: Ningxia Irrigation District : 2.20%

83% 16%

\

B: Hetao Irrigation District
C: Fenhe Irrigation District

D: Guanzhong Irrigation District

Land use

I Irrigated croplands Il Wet lands
B Forest lands B Urban lands
7 Grass lands Bare lands

D
0 120240 480 720 960

- ey s Viles



2. Methodology

® Framework modeling the basin-scale water management
® Core Parts: Climate model, hydrological model, Crop growth model, Reservoir operation

model, Water resources allocation model

Future grain

) «<—— AquaCrop-OS model
yield

Y GG S iikiA R A A A R N A A B
I

| GCM SDSM Other water | ] ]

| dataset model demand || Optimal Regulation

| model of water resources
I

| . I I J’

| Future meteorologica AquaCrop-0S Irrigation water | |

| dataset model demand

I V Irrigation water supply
I

: ABCD model > Future runoff J,

I

I

I

I

I

I



2.

v" Climate model

Model Construction

Three climate models: CanESM2, GFDL_ESM2G, and MIROC_ESM_CHEM
Three emission scenarios: RCP2.6, RCP4.5, and RCP8.5
Statistical down-scaling model (SDSM) is used to downscale the regional climate

I Input data J

!

Predictand data
(Daily precipitation)

Schematic diagram of SDSM

GCM duly predictors data 1
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SDSM-4.2 for downscaling the precipitation 4—I
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change with respect to the baseline period

The epoch-wise analysis at three different temporal scales for the assessument of

Selection

Selecting climate stations

Calibration

Calibrating using observed data and
GCM data

Validation
||» Performing checking for validation using
observed data

Generation
Generating future data using climate
scenarios output by GCM

Pichuka and Maity (2017, Hydrological Sciences Journal )
Hassan et al (2017, Journal of Engineering Research and Education)



2. Methodology and Model Construction

v" Climate model

* Three climate models: CanESM2, GFDL_ESM2G, and MIROC_ESM_CHEM
* Three emission scenarios: RCP2.6, RCP4.5, and RCP8.5

» Statistical down-scaling model (SDSM) is used to downscale the regional climate
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2. Model Construction

v" Climate model

* Three climate models: CanESM2, GFDL_ESM2G, and MIROC_ESM_CHEM
* Three emission scenarios: RCP2.6, RCP4.5, and RCP8.5
» Statistical down-scaling model (SDSM) is used to downscale the regional climate
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2. Methodology and Model Construction

v" Climate model

* Three climate models: CanESM2, GFDL_ESM2G, and MIROC_ESM_CHEM
* Three emission scenarios: RCP2.6, RCP4.5, and RCP8.5

» Statistical down-scaling model (SDSM) is used to downscale the regional climate
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Model Construction

Hydrologic model

ABCD model: a simple, nonlinear hydrologic model with four parameters which accepts
precipitation and potential evaporation as input, producing streamflow as output
The modified model incorporating temperature-dependent hydrological processes for cold

regions

Model parameters and state variables
e a -propensity of runoff to occur before the soil is

temperature precipitation  potential evap. fully saturated
a, * b -maximum storage capacity of the soil moisture
1 layer
snowfall rainfall o ¢ -allocation coefficient between direct runoff and
.o recharge
evapotranspiration S 2
RS e btk | o d -the reciprocal of the groundwater residence
SNOW | time
4 Slorage * a,and a; are two unknown constants to be
l estimated, so-called parameters with constraint
dy\ @
h a>a;
melt'mg e W - the available water
i N e Y - the sum of monthly potential
- evapotranspiration and soil moisture storage at the
I soil storage & .
end of the month
. :
l b e (G - groundwater storage at the end of the month

W-Y —  (l-cW-Y) — direct flow

l Q(surface runofl)

groundwater _‘i(.'. baseflow
storage




2. Methodology and Model Construction

40° N

v Hydrologic model

Legend
" Provincial boundary
DEM (m)

Value
- Low 3

Validation period (1991-2000)

Tangnaihai 0.65 0.85
z
o] Lanzhou 0.72 0.88
Toudaoguai 0.61 0.87
m & : e Lijin 0.56 0.75
3 100° E 108° E 116° E .
Calibration period (1975-1990) * Observed streamflow data at TNH,
Lanzhou, TDG and Lijin stations
NSE R2
e The NSE values are almost all higher
_ - y than 0.60 (except the Lijin station)
_ oles o0l in the calibration and validation




2. Model Construction

v Crop-growth model
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Flowchart of AquaCrop indicating the main
components of soil-plant-atmosphere continuum
Steduto et al. (2009, FAO, Rome)

AquaCrop model

a water-driven process-based multi
crop simulation model developed
by FAO.

The model is simple to use,
requires fewer input data, and has
a high level of simulation precision,
making it a useful tool for
forecasting crop vyield under deficit

irrigation and water management



2. Model Construction

v Crop-growth model
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2. Methodology and Model Construction

v Crop-growth model

* G@Grain yield data of 69 cities in the Yellow River Basin are used to calibrate the Aquacrop
model

* To reduce computation burden, the accuracy of the model is tested by comparing the
simulated crop yield and statistical crop yield in the normal and dry years of precipitation

Performance of the Aquacrop model in the Yellow River Basin

50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

- 0.97 0.98 0.97 0.98 0.92 0.96 0.84 0.91 0.92 0.91

9.14 8.31 8.64 8.79 8.03 5.18 16.12 13.63 5.66 5.95

0.99 0.99 0.99 0.99 0.96 0.98 0.90 0.95 0.95 0.94



2.

Model Construction

v Reservoir operation model and water resources allocation model
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© yirotogical sttion v" Long Yangxia--Multi-year regulation
- River
 Prvinial buandary v’ La Xiwa--Runoff regulation
o Hlgh : 6255

- v’ Li Jiaxia-- Runoff regulation
v Gong Boxia-- Runoff regulation
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v" Liu Jiaxia--Annual regulation

o Midstream region
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o Downstream region

v San Menxia-- Runoff regulation

v’ Xiao Langdi--Annual regulation

v' Wan Jiazhai--Seasonal regulation

v" Gu Xian--Annual regulation

 The Longyangxia, Liujiaxia, Guxian and Xiaolangdi
cascade reservoirs are used
e Guxian is under planning and construction and

expected to be completed in 2030



2.

Model Construction

v Reservoir operation model and water resources allocation model
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2. Model Construction

v Reservoir operation model and water resources allocation model

* Objective
I T
1. Volume the amount of water shortage (;;ﬂi’t)(Qd (i’t)—Qs(i’t))Nj
i=1 t=
1 &y 5
2. Time dimension temporal variance of water shortage rate ;';(R‘ R)
18 =\
3. Space dimension  spatial variance of water shortage rate \/g';(R‘R)

i=1 t=1

(3000, 60-0 600 (£ 5w ) | EEm-n ]



2. Model Construction

v Reservoir operation model and water resources allocation model

* Constraints

(1) Water balance between nodes (2) Reservoir water balance

T-t
Qdown,t = Qup,t -1 +Qup t ( ) = T Qagg,t T Arewurn.t — Yaivers,t — ioss. v (m’t +1) =V (m’t)+(Q| (m,t)—QO(m,t))xAt

(3) Constraints on reservoir storage and release

Vmin(m,t) <V (m,t) <Vmax(m,t) Qmin(m,t) <QO(m,t) <Qmax(m,t) Nmin(m,t) <N (m,t) < Nmax(m,t)

(4) Ecological water supply constraint

Constraint on water demand for the ecological environment in Lijin

S8 800 1000 1000 1500
(m3/s)




2. Methodology and Model Construction

v Reservoir operation model and water resources allocation model

* Constraints

(5) Ice-jam prevention constraint

Ice jams occur in Lanzhou from November to the following March and in Huayuankou from December to
the following April

so the discharge from Liujiaxia reservoir must comply with flood-control limitations from November to
March, as does the discharge from Xiaolangdi reservoir from December to April.

Critical flow value for ice-jam prevention at Lanzhou and Huayuankou in different periods (m3/s).

I T T B N AT
700 700 700 500

Qmaxlan

Lanzhou
Quintan 500 400 550 100
Qmaxhua 600 400

Huayuankou

Qminhua 500 300




2.

v Reservoir operation model and water resources allocation model

Model Construction

4 reservoirs x 30 years x 12 months/year = 1440 decision variables

164 agricultural water users x 30 years x 12 months/year = 59040 decision variables

Solution

Outer Layer: Optimal Operation Model of Cascade Reservoirs

Particle swarm optimization (PSO) algorithm

Space-filling Latin Hypercube sampling plan

Particle Best
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. xfr+1)

T (mew position)

Global minimum
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{ Y
|
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2.

v

Model Construction

Reservoir operation model and water resources allocation model

Solution

Inner Layer: Optimal Allocation Model of Water Resources

— . , , 13 _\”
1. Objective Minimum spatial variance of water shortage rate [\/E-Z(R—R) J

2. The priority of water resource allocation is setted as follows: domestic, industrial, ecological, and
agricultural water

3. Sequential quadratic programming (SQP) is employed to solve the water resources allocation
model

It is powerful enough for real problems because it can handle any degree of non-linearity including
non-linearity in the constraints

SQP: Sequential Quadratic Programming

constraint \constraint
Newton method to solve the KKT conditions : :
trust lon trust ion
ik f(x) KKT points: (.L - ‘_." +a7 (-h =0’ N
s.t.  hix)=0 S5 1. . -l

N

Newton: L &L | AL | i o) o)
oxt oxan || Ax| _Jox| ' '




3. Results

v’ Projections of three GCMs are used to analyze future climate change in 2020-2050 for YRB

v’ Precipitation doesn’t increase or decrease with the emission scenarios (RCP2.6, RCP4.5, RCP8.5)

v' The projected annual precipitation (2020-2050) is expected to rise slightly as compared to the

baseline of 1970-2005

v The largest increase is 8% under the MIROC_ESM_CHEM climate model, RCP4.5
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3. Results

v" All GCM model results show a temperature increase compared to the baseline of 1970-2005
v The largest increase is 1.14 °C under the CanESM2 climate model, RCP8.5

1.14
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3. Results

v" The estimated average annual runoff in the Yellow River Basin is lower than that in the baseline of
1970-2005 (470 x 108m3)
v The decrease of annual runoff ranges from 8% to 15%

x 108m3 CanESM2
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3. Results
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3. Results
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The irrigation water demand in the Yellow
River Basin changes remarkably with the
climate models

The average annual irrigation water
demand ranges from 211 to 240 x 108m?
( 290 x 108m?3 under the present situation
from VYellow River Water Resources
Commission )

The irrigation water demand is greater
under GFDL_ESM2G and
MIROC_ESM_CHEM than CanESM2
Especially under the CanESM2 model, the
difference between maximum and
minimum irrigation water demand s
nearly 20 x 108m?3

The irrigation water demands of Inner
Mongolia, Shanxi and Henan are in the top
three



3. Results

v The irrigation water shortage rate ranges from 34% to 45% under different climate models
v The average grain yield under climate change is 97 million tons in the Yellow River Basin

v' The climate model has relatively remarkable impact on grain yield. The difference between

maximum and minimum grain yield reaches to 16 million tons (17% of the 97 million tons)

Emission Agricultural water Water deficient Grain yield

Climate model
scenario supply(108m3) ratio (%) (10° ton)

RCP2.6 192.55 35.33 101.17

CanESM2 RCP4.5 177.16 38.81 98.89
RCP8.5 172.6 43.39 99.33
RCP2.6 208.56 35.34 104.84

GFDL_ESM2G RCP4.5 202.87 33.79 98.4
RCP8.5 195.89 37.86 99.69

RCP2.6 199.31 37.62 93.01

MIROC_ESM_CHEM RCP4.5 175.4 45.10 88.53
RCP8.5 183.97 37.89 92 30




4. Conclusion

v" The essence of water resources management model under climate change is a coupled
natural and human model. The climate model, hydrologic model, crop growth model,
reservoir operation model, and water resources allocation model are the key

components of the model.

v The precipitation and temperature in the Yellow River Basin both increase under different
climate models.

v' The changes of difference of temporal-spatial precipitation and temperature under
climate change leads to the decreasing runoff in the Yellow River Basin.

v' The grain yield in the Yellow River Basin presents a remarkable difference between
different climate models. The uncertainty embedded in climate models should attract
considerable attention.
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