
Accounting for the Human Impacts of Over-Exploiting Aquifers with Deteriorating Water Quality in Semi-arid Regions

Peter S. K. Knappett¹, Richard T. Woodward², Paulina Farias³, Jaime Hoogesteger⁴, Horacio Hernandez⁵, Saugata Datta⁶, Gretchen Miller⁷, Itza Mendoza⁸, Genny Carrillo⁸, Yanmei Li⁹, Isidro Loza⁹, Dylan Terrell¹⁰

¹Geology & Geophysics, ² Agricultural Economics, ⁷ Civil Engineering, ⁸ Public Health, Texas A&M University
³ Environmental Health, Instituto Nacional de Salud Pública, México
⁴ Water Resources Management, Wageningen University, The Netherlands
⁵ Geomatic and Hydraulic Engineering, University of Guanajuato, México
⁶ Geological Sciences, University of Texas at San Antonio
⁹ Mines, Metallurgy & Geology Engineering, University of Guanajuato, México
¹⁰ Caminos del Agua, Mexico

Impacts from Over-Exploiting an Aquifer System in a Semi-arid Region

- 1. Falling <u>water tables</u>
 - Drives up electricity costs for pumping
 - Forces people to expensive new wells
- 2. Deteriorating water quality
 - Accessing deeper, older more mineralized water
 - Higher Total Dissolved Solids (TDS)
 - Higher Geogenic Arsenic Concentrations
- 3. Human development
 - Decreasing Childhood IQ
- 4. Wealth
 - Household Income
 - Drinking water quality mitigation costs
 - Agricultural Industry
 - Rising Energy Costs Decrease Profits

Objective

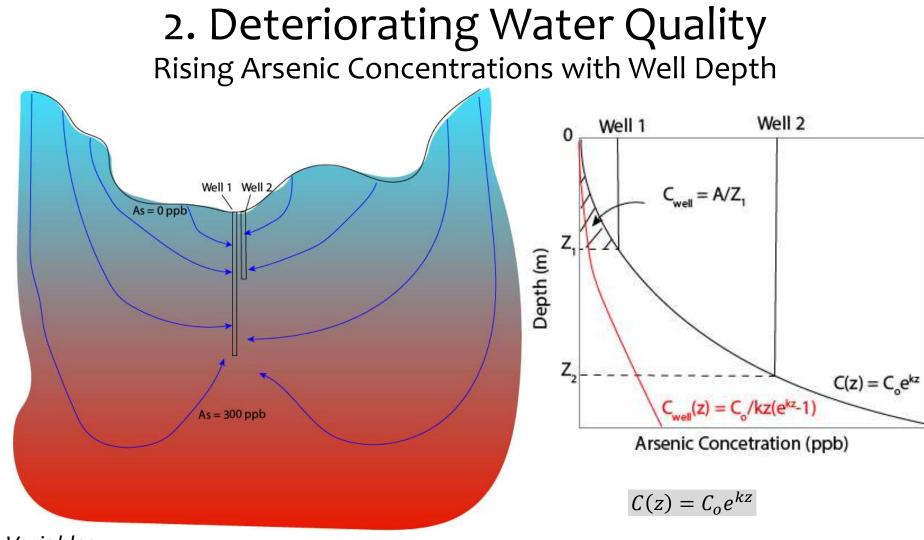
 Understand the long-term impacts of intensive irrigation pumping of aquifers on human health and economic development in regions solely dependent on groundwater.

Study Area

Austin

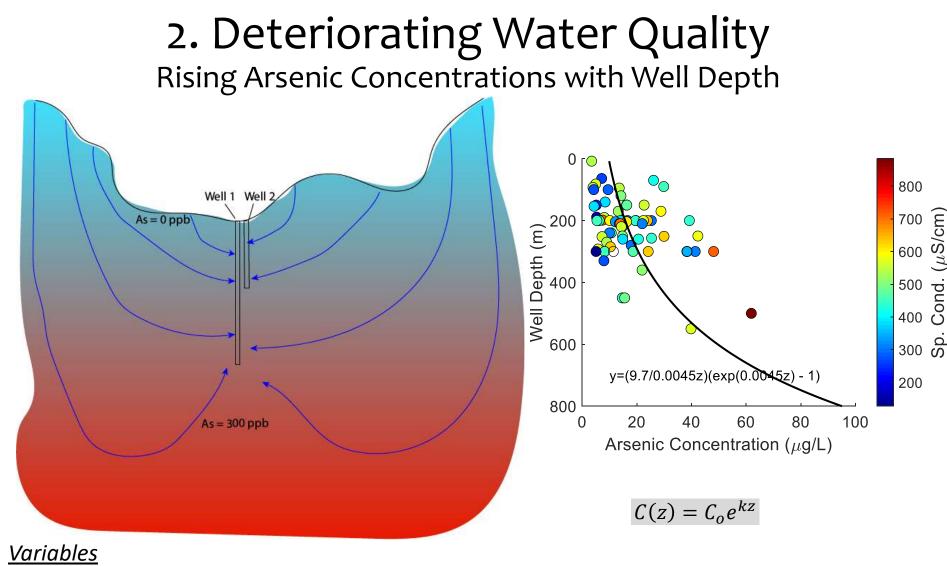
Houston

Guanajuato State

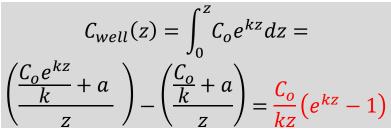


Mexico City

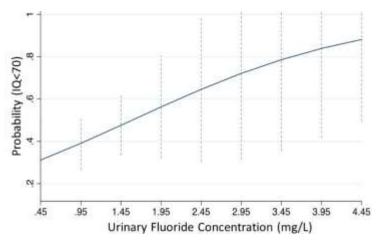
1. Falling Water Tables



Li et al., J. Hydrol., 2020.



z- depth below ground surface [m]C(z)- arsenic concentration at depth [ppb] C_o - arsenic concentration at surface [ppb] C_{well} - integrated arsenic concentration [ppb]k- rate of increase in arsenic with depth [m⁻¹]

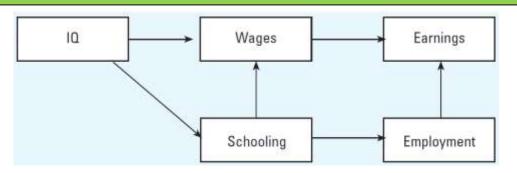

 $C_{well}(z) = \int_0^z C_o e^{kz} dz = \left(\frac{C_o e^{kz}}{k} + a}{z}\right) - \left(\frac{\frac{C_o}{k} + a}{z}\right) = \frac{C_o}{kz} \left(e^{kz} - 1\right)$

z- depth below ground surface [m]C(z)- arsenic concentration at depth [ppb] C_o - arsenic concentration at surface [ppb] C_{well} - integrated arsenic concentration [ppb]k- rate of increase in arsenic with depth [m⁻¹]

3. Human Health and Development Estimating Lost Lifetime Earnings from Exposure to Arsenic and Fluoride

Probability of having an IQ<70 in relation to urinary fluoride concentrations in 6-12 year old children (Farias et al., In Prep.).

One study found 1 μ g/L increase in As in drinking decreases IQ by ~6% (*iq* = 0.06)


$$IQ = iq(\log_e As) + IQo$$

Rocha-Amador et al., *Cad. Saude. Publica, 2007.*

Each IQ point reduction below 100 was estimated to result in approximately 2% per capita economic output (RIQ = 0.02).

$$k_{IQ} = R_{IQ}(IQ - 100)$$

Attina & Trasande, *Environ*. *Health Persp., 2013*.

Minor IQ reductions may have big impacts on lifetime earnings.

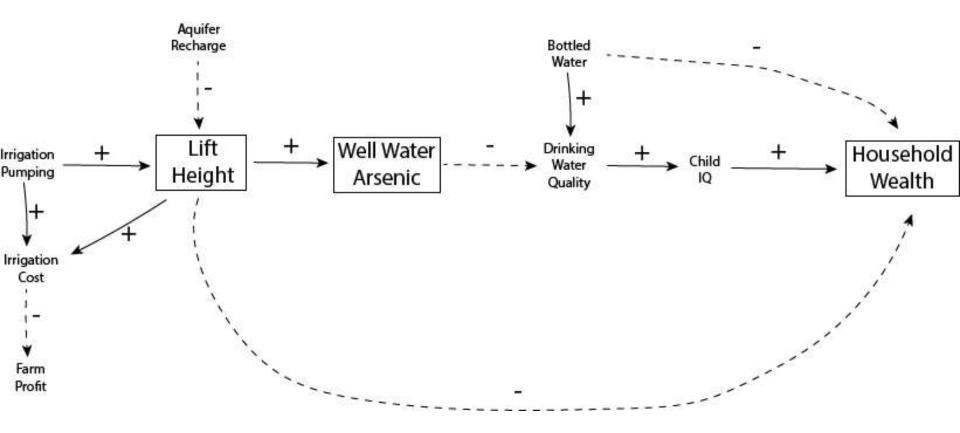
Grosse et al., Environ. Health Persp., 2002.

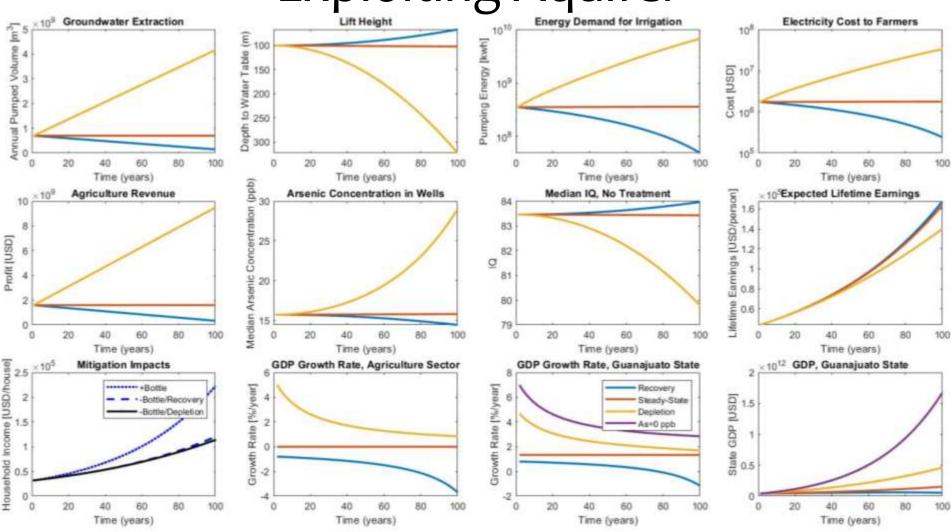
4. Negative Impacts on Wealth From Mitigation Costs

- 1. Decrease rate of pumping
 - Improving Irrigation Technology
- 2. Filtration
 - Ferric Oxide
 - Reverse Osmosis
- 3. Alternative Sourcing
 - Rainwater Harvesting
 - Bottled Water

Household Ferric Oxide Filters for Arsenic

Flood Irrigation


Wellhead filtration to lower TDS for irrigation


Bottled water for family of five = 634 USD/yr

Water quality mitigation increases burden on households for safe drinking water.

Dynamic Systems Model

Social and Economic Impacts of Over-Exploiting Aquifer

Assumes 3 scenarios: 1) Water Table Recovers, 2) Water Table Remains at Steady-state, 3) Depletion Continues (most likely)

Conclusions

- Falling water tables lead to a host of problems down the road in a region that is exclusively dependent on groundwater
 - The *impacts and recognition* of these problems have long time lags that hide the true externalities of big agriculture production in arid regions
- 2. The cost of mitigating exposure to arsenic are large relative to household income (~5%), but the economic return on investment in mitigation over a generation for the individual and the state are high
- 3. Even with the most optimistic aquifer recharge rate of 0.16 m/yr, the recovery of the water table will take centuries
- 4. Lack of systematic accounting of the present and future impacts will delay the full recognition of trade offs and inequalities from over-exploiting an aquifer

References

- Attina, T.M. and Trasande, L. 2013. Economic Costs of Childhood Lead Exposure in Low- and Middle-Income Countries. Environ Health Persp 121(9), 1097-1102.
- Fulton, J., Norton, M. and Shilling, F. 2019. Water-indexed benefits and impacts of California almonds. Ecol Indic 96, 711-717.
- Hoogesteger, J. and Wester, P. 2017. Regulating groundwater use: The challenges of policy implementation in Guanajuato, Central Mexico. Environ Sci Policy 77, 107-113.
- Knappett, P.S.K., Li, Y., Loza, I., Hernandez, H., Aviles, M., Haaf, D., Majumder, S., Huang, Y., Lynch, B., Pina, V., Wang, J., Winkel, L., Mahlknecht, J., Datta, S., Thurston, W., Terrell, D. and Nordstrom, D.K. 2020. Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Res 185(116257).
- Li, Y.M., Hernandez, J.H., Aviles, M., Knappett, P.S.K., Giardino, J.R., Miranda, R., Puy, M.J., Padilla, F. and Morales, J. 2020. Empirical Bayesian Kriging method to evaluate inter-annual water-table evolution in the Cuenca Alta del Rio Laja aquifer, Guanajuato, Mexico. J Hydrol 582.
- Rocha-Amador, D., Navarro, M.E., Carrizales, L., Morales, R. and Calderon, J. 2007. Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica 23, S579-S587.
- Scott, C.A. 2011. The water-energy-climate nexus: Resources and policy outlook for aquifers in Mexico. Water Resour Res 47.
- Wang, L., Kinzelbach, W., Yao, H., Hagmann, A., Li, N. and Steiner, J. 2017 Analysis of energy requirement in the irrigation sector and its application in groundwater over-pumping control at a local scale A case study in the North China Plain, New Orleans.