

A Nexus trade-offs analysis of water, energy, food, nutrition and feedback to the environment in Lebanon

Presenting: Sandra F. Yanni, PhD

Co-Authors: Bassel Daher¹, Roula Bachour², Sandra F. Yanni², Sasha Koo-Oshima³ Rabi H. Mohtar^{1, 2}

¹ Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA;

² Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon

³Land and Water Division, Food and Agriculture Organization of the United Nations (FAO)

Introduction & Background

- Food security in Lebanon is a pressing matter especially under the latest economic, financial, political, and health challenges.
- Agriculture is one of the few sectors in the country that can contribute to the economy
 - Improvement of local production of nutritious food
 - Reduction of reliance on import of food which is very high cost
- Challenges:
 - population increase
 - freshwater scarcity and degradation of water quality
 - high energy cost
 - limited land resources

Faculty of Agricultural and Food Sciences

Introduction & Background

- Realizing that unilateral disciplinary approaches to water scarcity issues do not account for the interconnectivity between water and energy for food production
- Nexus approach to quantify the interconnections between water, energy, nutrition, and food systems in Lebanon
- Explore scenarios that increase local food production vs. import and impact on resources
- Focusing on the Lebanese-Mediterranean plant-based diet which has been shown to be healthy with a smaller environmental footprint
- <u>Public Health impact:</u>
 - Assess the environmental impact of these scenarios (GHG)
 - Improvement of nutritious level in Lebanese food basket

Methodology

- 1. Defining the interconnectivity of W-E-F
- 2. Scenarios and tradeoff analysis

Methodology

- Assessment based on the baseline year of 2017
- Sources considered and % use of each in 2017:
 - Water sources:
 - Surface water \rightarrow 80%
 - Groundwater \rightarrow 20%
 - Treated wastewater \rightarrow 0%
 - Energy sources (for food and for water)
 - Diesel → 70-100%
 - Gasoline \rightarrow 0-30%
 - Solar \rightarrow 0%
 - Wind \rightarrow 0%
- Defining Self-Sufficiency ratio as:

% Self-Sufficiency Ratio $_{i} = (Production_{i} * 100) / (Production_{i} + Import_{i} - Export_{i})$

• Calculating amounts of water and land needed for current production

Crops selected: non-exhaustive selection but most crops CONFERENT that can be produced locally

>100% self-sufficiency	
230	
146	
145	
136	
131	
123	
116	
110	
110	
109	
107	
103	
101	

> 90% self-sufficiency		
Olives	100	
Tomato	100	
Our second by an	00	

Tomato	100
Cucumber	98
Melon	98
Watermelon	96
Zucchini	92

ereals		
Wheat	17	
Corn	1	

Medium and low self-sufficiency		
Peas (dry)	90	
Beans (green)	89	
Onion (dry)	89	
Pepper (green)	80	
Strawberry	73	
Peas (green)	70	
Walnut (with shell)	49	
Beans (dry)	48	
Garlic	25	
Chickpeas	19	
Lentil	7	
Broad Beans	3	

INF

CE

2017			
Water	(m ³)	464,793,307	
Energy	(GJ)	1,547	
Land	(ha)	198,179	
Cost	(Billion LBP)	1,539	
Emissions	(ton CO ₂)	105,744	
Nutrition	(kcal)	1.4 E+14	
Reliance	ratio (I/C)	0.45	

Scenario A:

- Increase self-sufficiency to enrich the Lebanese food basket with nutritious food produced locally
 - Increase beans (green, broad, dry), lentils, chickpeas and peas (dry, green) to 100% SS
 - Water: 80% groundwater, 20% surface water (same as 2017)
 - Energy-Water: 100% Diesel (same as 2017)
 - Energy-Food: 70% Diesel, 30% Gasoline (same as 2017)

ONLINE CONFERENCE

Options:

- Increase self-sufficiency to enrich the Lebanese food basket with nutritious food produced locally
 - Increase beans (green, broad, dry), lentils, chickpeas and peas (dry, green) to 100% SS
 - Decrease production of crops with SS>100% to SS=100% i.e. stop export of these crops

Another Option:

- Increase self-sufficiency to enrich the Lebanese food basket with nutritious food produced locally
 - Increase beans (green, broad, dry), lentils, chickpeas and peas (dry, green) to 100% SS
 - Water: 60% groundwater (Reduced), 20% surface water, 20% treated wastewater (Alternative Resource)
- Results in reuse of 105 million m³ of wastewater and relieving the dumping of raw contaminants into rivers
- Saving freshwater for other pressing uses

Conclusion

- Investing in locally produced needs of pulses (*broad beans, lentils, chickpeas, and peas*) results in increased nutritional value in the locally produced basket, and reduced reliance on foreign markets.
- With proper resource allocation, this results in reducing pressure on fresh water and reducing contamination of surface and groundwater
- Results in reducing GHG emissions
- Positive implications on public health
- For achieving this, the WEF Nexus Tradeoff is a helpful tool and the requirements include:
 - Improved technologies
 - Better policies/incentives
 - Public awareness and change in behavior of producers and consumers