
Science-policy nexus: using resource directed measures as policy implementation strategies to promote integrated water resource management, South Africa

S.M. Nzama^{1*} and T.O.B. Kanyerere

¹Reserve Determination, Department of Water and Sanitation, Pretoria, South Africa ²Department of Earth Sciences, University of the Western Cape, Bellville, South Africa


ABSTRACT

BACKGROUND

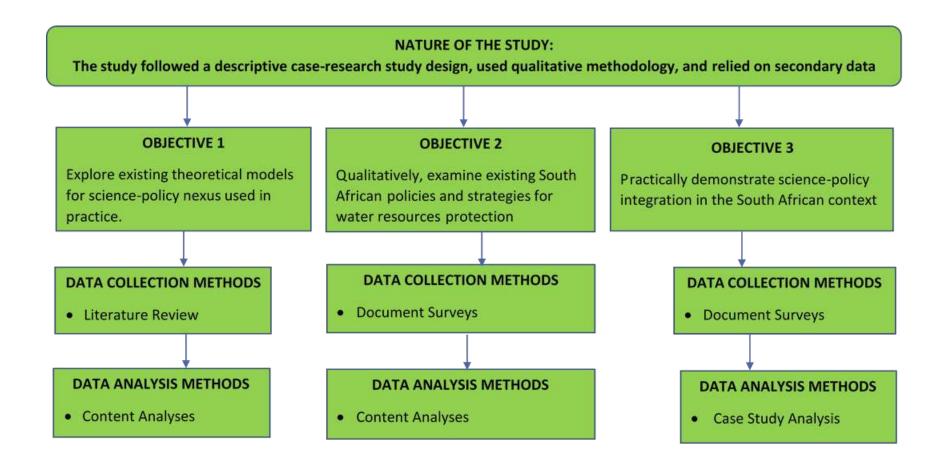
- Scientist investigation possible solutions
- Policy Makers institute intervention measures
- Interaction between Scientist and Policy Makers Required
- Scientific knowledge not effectively communicated to decision makers
- Scientific product complex and difficult to understand

RESEARCH QUESTONS AND ARGUMENT

Question 1:

How scientists and policy makers engage each other at science-policy interfaces in addressing social challenges linked to water resource quality and availability?

Question 2:

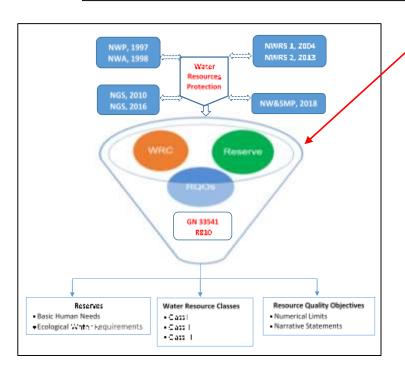

How South Africa translates abstract of a legislation into practice using science and how science is used in policy development and implementation?

Argument:

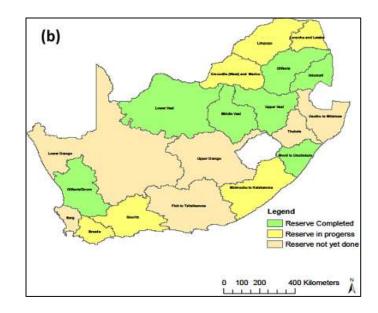
The study argues that science-policy interface must be practical, reflective and must consider the nexus approach where scientific results are translated into readily usable formats

STUDY OBJECTIVES AND METHODOLOGY

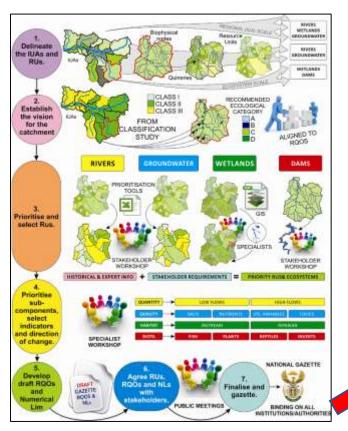
OBJECTIVE 1: RESULTS AND DISCUSSION CONF


ENGAGEMENT	NATURE OF ENGAGEMENT
Science-Policy Integration (SPI)	Provides rationale and evidence-based solutions
	Independence from political influence
Policy-Science Integration (PSI)	May provide policy relevant solutions
	Allows for incorporation of general public opinions
	Policy relevant problems are investigated
Mixed Integration (MI)	Scientific research products understood by both
	parties
	Science research products implementable

COMPARATIVE ANALYSIS				
Type of integration	Current Study	Previous Studies		
Science-Policy Integration (SPI)	Favours Scientist	• Dunn et al., 2018		
Policy-Science Integration (PSI)	Favours Policy Makers	Tieberghien, 2014		
Mixed Integration (MI)	 Favours both Scientist and Policy Makers Research question and science results understood by both parties 	 Akhtar-Schuster et al., 2016 Hughes et al., 2018 		

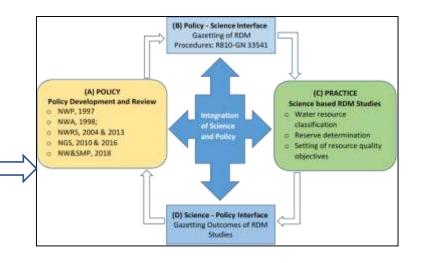

OBJECTIVE 2: RESULTS AND DISCUSSION CONFERENCE

Legislation/Policy/Strategy/Regulation/Plan	Document Type	Promulgation Year
White paper on water policy of 1997 (NWP, 1997)	Policy	1997
National Water Act (Act 36 of 1998), (NWA, 1998)	Legislation	1998
National Water Resource Strategy of 2004 (NWRS, 2004)	Strategy	2004
National Water Resource Strategy of 2013 (NWRS, 2013)	Strategy	2013
National Groundwater Strategy, 1st Edition (NGS, 2010)	Strategy	2010
National Groundwater Strategy, 2nd Edition (NGS, 2016)	Strategy	2016
National Regulation Number 810 of 2010	Regulation	2010
National Water and Sanitation Master Plan (NW&SMP, 2018)	Plan	2018



Science Studies of Resource Directed Measures

OBJECTIVE 3: RESULTS AND DISCUSSION


Sub-component	TEC	RQO	Indicator/ measure	Numerical limits	TPC
A – Berg River – Bvii6					
Hydrology		Flows sufficient to maintain the river in a D category.	Observed flow:	Table 3.15	
Nutrients		River nutrient levels must be maintained in an	Phosphate (PO4-P)	Median ≤ 0.075 mg/l PO4-P	0.060 mg/l PO4-
THE LINE IS		oligotrophic condition.	Total inorganic nitrogen (TIN)	Median ≤ 1.75 mg/l TIN	1.40 mg/l TIN
Sats		Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	Electrical conductivity (EC)	95%5le < 55 mS/m EC	44 mS/m EC
System variables			pH		
		the maintenance of ecosystem health.	Water temperature	6.5 ≥ pH ≤ 8.5	7 ≥ pH ≤ 8
		Dissolved axygen	2°C difference from ambient	1.6 °C difference from ambient	
Toxins		Toxicity levels must not pose a threat to aquatic ecosystems.	Toxic substances specified in Appendix A (DWAF, 2008, Table 4-8)	5%tile DO ≥ 6 mg/l	7.2 mg/l DO
Pathogens		Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	E coli	Concentration limits specified for Rating of 1/fideal in Appendix A (DWAF, 2008).	
Geomorphology B	В/C	Geomorphological condition	GAI score -	> 68% = B/C category	< 62% = C/D category
		Sand particle size	D50	0.576 > D50 > 0.349	0.576 < D50 < 0.349
Aquatic and riperian D vegetation	D	Vegetation condition	VEGRAI level 3 score.	> 42% = D category	< 38% = E category
		Marginal zone cover abundance	Exotic species	No exotic plant species.	Exotic species present
			Terrestrial woody species	No terrestrial woody species.	Cover >1%
			Indigenous riparian woody species	Cover 30-50%.	Cover < 20%
			Non-woody indigenous species	Cover 30-50%.	Cover < 20%

Source: DWS, 2018

Source: DWS, 2014

Integration Depicted

Mixed Integration between Science and Policy

CONCLUSSION

CONCLUSSION			
Research question:	How scientists and policy makers engage each other in science-policy interfaces? And how South Africa translates abstract of a legislation into practice using science and vice versa?		
Answer to the research question:	Three types of science-policy nexus theoretical models exist in practice, namely, 1) science-policy integration, 2) policy-science integration, and 3) mixed integration. South Africa is able to use mixed integration model of the nexus.		
Study contribution:	This study provides a model for collaborations between researchers and/or scientists and policy makers to ensure that science research is answering policy-relevant questions and that results from scientific work are readily available for policy implementation.		
Study limitation:	Quantitative factors for impact, adaptation of the nexus were not assessed		
Further research:	Assessing application of science-policy nexus for addressing water resources challenges in data scarce catchments.		
Recommendation:	Extrapolation of the analytical approach developed and tested to other settings where science-policy integration remains a challenge		

CITED LITERATURE

- 1] Akhtar-Schuster, M., Amiraslani, F., Morejon, C.F.D., Escadafal, R., Fulajtar, E., Grainger, Kellner, K., Khan, S.I., Pardo, O.P., Sauchanka, U., Stringer, L.C., Reda, F., & Thomas, R.J. (2016). Designing a new science-policy communication mechanism for the UN Convention to Combat Desertification. Journal of Environmental Science and Policy, 63, 122-131. https://doi.org/10.1016/j.envsci.2016.03.009
- 2] DWS (Department of Water and Sanitation). (2014). Determination of Resource Quality Objectives in the Lower Vaal Water Management Area. Private Bag X313, Pretoria, 0001 Republic of South Africa
- **3]** DWS (Department of Water and Sanitation). (2018). Determination of Water Resources Classes and associated Resource Quality Objectives in Berg Catchment. Private Bag X313, Pretoria, 0001 Republic of South Africa
- 4] Dunn, G., Bos, J.J., & Brown, R.R. (2018). Mediating the science-policy interface: Insights from the urban water sector in Melbourne, Australia. Journal of Environmental Science and Policy, 82, 143-150. https://doi.org/10.1016/j.envsci.2018.02.001
- 5] Hughes, K.A., Constable, A., Frenot, Y., López-Martínez, J., McIvor, E., Njåstad, B., Terauds, A., Liggett, D., Roldan, G., Wilmotte, A., & Xavier, J.C. (2018). Antarctic environmental protection: Strengthening the links between science and governance. Journal of Environmental Science and Policy, 83, 86-95. https://doi.org/10.1016/j.envsci.2018.02.006
- 6] Tieberghien, J. (2014). The role of the media in the science-policy nexus. Some critical reflections based on an analysis of the Belgian drug policy debate (1996–2003). International Journal of Drug Policy, 25 (2), 276-281. https://doi.org/10.1016/j.drugpo.2013.05.014

THANK YOU!!!