Defining Future Climate Conditions for a River Basin in Northeast Brazil

Combining GCMs Predictions, Promoting Scenario Planning, and Embracing Uncertainty

Layla Lambiasi, Researcher at the Center for Sustainability Studies (GVces) of the Business Administration School of Fundação Getulio Vargas (FGV-EAESP)

FGV EAESP

CENTRO DE ESTUDOS EM SUSTENTABILIDADE

REGION OF INTEREST: NORTHEAST BRAZIL

1.406.808 habitants (2010)

- Potential worst CC impacts
- Already at risk (water crisis): severe droughts
- Systems of intermittent reservoirs: All rain drops between February and May
- Rural profile

RANHAS ACH

THE CONTEXT: A COST-BENEFIT ANALYSIS

QUESTION 3

How can we respond?

QUESTION **1** Where and from what are we at risk?

QUESTION **2** What is the magnitude of the expected losses? Water deficits on a monthly basis for each district of the analyzed river basin

> Economic loss in monetary terms divided by type of user

Cost/benefit ratio of each measure

FGV EAESP

SCENARIO PLANNING APPROACH

- Deal with uncertainty in a proactive matter
- Apart from predicting the future, be prepare for whatever it might happen
- Scale up a decision-making process that takes into account a range of possible and plausible future scenarios
- Set a satisfactory setting that can represent future conditions of interest

INPUT DATA BACKGROUND

- Given the national interest in the region, it has been focus of different researches
- An previous study compiled IPCC's 21 GCMs results (4.5 and 8.5 RCP) of precipitation and evaporation, considering the coordinates of the two biggest reservoirs in the basin, also running a hydrologic model to obtain flow rates series in each reservoir.

METHODOLOGICAL STEPS

- **A.** Assume each simulation as an independent prediction
 - Use the GCMs results as a tool for a robust planning process.
 - Each one of the 42 resulted simulations is taken as independent predictions

B. Apart from absolute values, deal only with the predicted variation rates by each projection

 Overcome inconsistencies and debatable absolute values: categorizing and evaluating only the predicted changes in flow rates according to each projection **C.** Analyze data per five classes of events defined by percentiles ranges The Quantile Technique: analyzing hydrological events by classes

D. Mapping hydroclimate parameters: intensity, frequency and distribution of flow rate events

15 20 25

Quantile Order (p)

95 100

E. Triage the models per majoritarian trend observed in each class of events among all projections

Very dry Dry Normal Wet Very wet	More than 70% of the projections pointed the events of these classes would become more dry There was not agreement on the behavior of these classes		Majoritarian trends for flow rate intensity variation per class of event
		Very dry	More than 70% of the projections pointed that the number of events of this class is getting higher
Majoritarian trends of variation per class of e	event frequency	Dry Normal Wet	More than 80% of the projections pointed that the number of events of these classes are getting lower
		Very wet	There was not agreement on the behavior of this class

F. Chose the proper projection taken as representative of each scenario of interest

• Through different criteria, such as eliminating the projections that did not cope with the majoritarian trends, get a final sample of future scenarios

G. Apply the variation rates predicted by the chosen GCMs on historic flow data producing the estimated future values

ACKNOWLEDGEMENTS

The cooperation with the National Water Agency (ANA) of Brazil was fundamental for developing this study.

THANK YOU!!

Layla Lambiasi

layla.lambiasi@fgv.br