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Choice Model for Residential Water Demand 2 

Abstract 3 

During recent decades, water demand estimation has gained a lot of attention from 4 

scholars. From an econometric perspective, the most used functional forms include both the 5 

log–log and the linear specifications. Despite the advances in this field, as well as the 6 

relevance for policy making, little attention has been paid to the functional form used in these 7 

estimations, as most authors have not provided any justification for the chosen functional 8 

forms. In this paper, we estimate a discrete continuous choice model for residential water 9 

demand using four functional forms (log–log, semi-log, linear, and Stone–Geary) comparing 10 

both the expected consumption and the price elasticity. From a policy perspective, our results 11 

shed light on the relevance of the chosen function form, for both the expected consumption 12 

and the price elasticity. 13 

1 Introduction 14 

In this paper, we estimate a discrete continuous choice (DCC) model for residential 15 

water demand using four functional forms, comparing both the expected consumption and 16 

the price elasticity.  Arbués et al. [2003],  Dalhuisen et al. [2003] and Ferrara [2008] show 17 

several functional forms used in the literature to specify the water demand equation, they 18 

argue that the selection of a functional form may affect the estimates of price and income 19 

elasticities. Comparison among functional forms is scarce in the literature, and authors 20 

generally do not provide any justification for the chosen functional forms. Other studies 21 

attempt to mitigate this uncertainty by estimating several functional forms, expanding the 22 

number of results available for researchers and policy makers regarding consumption 23 

prediction and elasticities.  24 

To the best of our knowledge, an evaluation of the impact of functional forms in the 25 

context of a DCC model is not available. Increasing block tariff (IBT) schemes are very 26 

common in the literature. For instance, more than 40% of the studies reported by Dalhuisen 27 
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et al. [2003] show multiple or non-linear tariffs, while 74% of water utilities in developing 28 

countries use an IBT, according to Fuente et al. [2016]. Thus, the understanding of the role 29 

played by the functional form is key to informing policy makers in the development of water 30 

policies. 31 

When dealing with an increasing (or decreasing) price scheme (increasing block 32 

tariff, ITF) researchers have to solve the simultaneous choice of both the marginal price and 33 

the consumption level. Hewitt and Hanemann [1995] and Olmstead et al. [2007] solve this 34 

simultaneity issue (endogeneity) by using a discrete-continuous choice model to estimate the 35 

water demand. They illustrate their solution using a “log-log” (logarithmic or double log) 36 

demand equation. The log–log is the prevailing functional form in DCC model literature. 37 

This may be because of the difficulties in building the likelihood function in the DCC model, 38 

and the even more intricate calculation of price and income elasticities—see Olmstead et al. 39 

[2007]—or the fact that no software package includes the DCC model. We filled this gap by 40 

building the likelihood function for each functional form; we also derive the formula for the 41 

expected value and the price elasticity in each case.  42 

Section 2 briefly reviews the literature and presents the functional forms; section 3 43 

shows the DCC choice model and the mathematical expressions of expected consumption 44 

and price elasticity for each functional form; Section 4 shows results and hypothesis testing; 45 

and section 5 presents the conclusions. 46 

2 Water Demand and Functional Forms 47 

Since Headley [1963] and Howe and Linaweaver [1967], there has been an increasing 48 

number of studies analyzing the factors that influence water consumption, the impact of 49 

socio-economic variables on water demand, and the calculation of price and income 50 

elasticities. Headley [1963] carries out one of the first studies analyzing the impact of income 51 

on water consumption, Howe and Linaweaver [1967] and Wong [1972] include prices as a 52 

determinant of household water consumption, while Wong [1972] also incorporates the effect 53 

of climate variables into the demand equation. But it is in Young [1973] where the idea of 54 

“water price elasticity” is coined in the literature.  55 



2 
 

These studies, and the following development of the literature, are well presented in 56 

Arbués et al. [2003] and Ferrara [2008]; both authors identify the functional forms of the 57 

demand equation as key in determining the results reported in the literature. Arbués et al. 58 

[2003]  and Dalhuisen et al. [2003] present three frequently used functional forms: the linear 59 

functional form, the log-log form, and the semi-log form (see Table 1).  60 

In Table 1 𝑤 is water consumption in m3, 𝑍 is a vector of sociodemographic and 61 

climate variables, 𝑃 is price, 𝑌 is income, μ is a stochastic component and δ, α, and γ are 62 

parameters to be estimated. These three functional forms cover more than 95% of all studies 63 

on water demand; an important number of those studies use more than one functional form.  64 

 Al‐Qunaibet and Johnston [1985] and Gaudin et al. [2001] also use an alternative 65 

functional form known as the Stone–Geary (SG) function, which considers the existence of 66 

a minimum level of consumption (subsistence level) in its structure. 67 

 68 

Table 1: Functional forms commonly used in the residential water demand 69 

 Equation Dalhuisen et al. (2003) Arbués et al. (2003) 

Log-log  lnw = Zδ + αlnP + γlnY + μ 28 16 

Semi-log lnw = Zδ + αP + γY + μ 3 8 

Linear w = Zδ + αP + γY + μ 24 29 

SG w = Zδ + α(Y/P) + γ(1/P) + u 3 2 

More than one  10 (26.3%) 11 (35.4%) 

 70 

The vast majority of studies do not provide any justification for the functional form 71 

they use in their demand equation [Arbués et al., 2003].  The empirical evidence shows that 72 

both the price elasticities and the expected consumption are sensitive to the functional form 73 

specification. Thus, it is advisable to estimate several functional forms, providing a range of 74 

estimates, to address the uncertainty about the functional form adequacy.  75 

Theoretically, there are some reasons to choose one functional form over others. For 76 

instance, water is an essential good, and, therefore, the functional form should consider this 77 

fact. Although this rules out the linear functional form, the linear functional form is one of 78 



3 
 

the most common forms used in the literature. On the contrary, both the log–log and semi-79 

log functional forms are asymptotic to zero, showing that water is an essential good, while 80 

the Stone–Geary includes a minimum (subsistence) level of consumption in its structure. On 81 

the other hand, estimation and calculation of price elasticity are also straightforward in the 82 

log–log, semi-log, and linear functional forms, but these desirable attributes are lost in the 83 

DCC model.  84 

Furthermore, goodness of fit is an empirical issue; therefore, researchers could 85 

estimate several functional forms and select the one with the best fit to the data. Even if we 86 

do not want to select a particular functional form, providing estimations from different 87 

functional forms enrich the analysis for both researchers and policy makers. Capturing a 88 

wider range of possible results will tell us whether the estimates are robust to functional form 89 

or, on the contrary, tell us that the variability of the estimates could indicate either poor data 90 

or an incorrect estimation strategy.  91 

3 Increasing Block Tariff and Simultaneity: The Discrete-Continuous Choice Models 92 

The presence of non-linear price structures, as in the case of an IBT (Figure 1), 93 

produces an endogeneity problem that will impose challenges for the estimation of the 94 

demand equation. In Figure 1 people can consume either below 𝑤1 or above this threshold 95 

(kink point); for quantities below 𝑤1 the consumer will pay 𝑝1, while, for quantities above 96 

𝑤1, he/she will pay 𝑝2. The shaded area represents a “virtual subsidy,” because people 97 

consuming above 𝑤1  pay less for the first 𝑤1  m
3.  98 
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Figure 1: Example of a two-block increasing price system. 99 

 100 

 Taylor [1975] shows that a non-linear price system transforms the linear budget 101 

constraint in the consumer utility maximization problem into a non-linear budget constraint 102 

(in some cases, non-convex), as is shown in Figure 2. The optimal level of consumption can 103 

be below, on, or above w1, and the “virtual subsidy” changes the budget constraint of the 104 

consumer. Nordin [1976] suggests considering this subsidy by recalculating the household 105 

income through adding the virtual income, which is determined as the price difference times 106 

𝑤1.  107 

Figure 2: Effect of a non-linear price system on the budget constraint. 108 

 109 

This suggestion solves the fact that people face a nonlinear budget constraint, but 110 

does not solve the endogeneity issue, that is, the simultaneity between the consumption level 111 

Amount of water 
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and the price choice. Hewitt and Hanemann [1995] suggest the DCC model, using a log–log 112 

functional form, to deal with the endogeneity issue, while Olmstead et al. [2007] propose an 113 

analytical expression for the estimation of the price elasticity within the DCC model. 114 

Defining the elasticity in an IBT system is not straightforward, since there are multiple 115 

elasticities that can be estimated. For instance, we could estimate the price elasticity for a 116 

proportional change in the first price (𝑝1), the elasticity of a change in the second price (𝑝2), 117 

or the elasticity of a change in any price included in the tariff system. Furthermore, we could 118 

be interested in the elasticity associated with a proportional change in the whole price 119 

structure.    120 

3.1 The DCC Model: Theoretical and econometric model  121 

Although this model is already presented in several papers [Hewitt and Hanemann, 122 

1995; Moffitt, 1986; 1989; Olmstead et al., 2007], we repeat some equations of the DCC 123 

model to assure the document is self-contained. For our simple two-price case, there are two 124 

prices related to each of the tiers (𝑝1 and 𝑝2), as well as one kink point 𝑤1, which separates 125 

block 1 from block 2.  This is generalized to k tiers, 𝑘 prices, and 𝑘 − 1 kink points. 126 

The conditional demand represents the water consumption decision made by a 127 

consumer, given that he is in a determined consumption block. The conditional demand to a 128 

k consumption block is equal to the demand equation evaluated in the marginal price for the 129 

corresponding block (𝑝𝑘), and the household income plus the compensation to the income 130 

proposed by Nordin (1976) (𝑑𝑘) is defined as: 131 

𝑑𝑘 = {

0 𝑠𝑖 𝑘 = 1,

∑(

𝑘−1

𝑗=1

𝑝𝑗+1 − 𝑝𝑗)𝑤𝑘 𝑠𝑖 𝑘 > 1.
 132 

The unconditional demand is a function of all consumption blocks and kink points; 133 

consequently, it captures the full decision made by the consumer. For instance, the 134 

conditional demand under the log–log functional form is: 135 

  

𝑤(𝑝𝑘, 𝑦 + 𝑑𝑘) = 𝑒𝑥𝑝(𝑍𝛿)𝑝𝑘
𝛼(𝑦 + 𝑑𝑘)𝛾 

 

(1) 
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Whereas, under the semi-log form, the conditional demand is: 136 

  

𝑤(𝑝𝑘, 𝑦 + 𝑑𝑘) = 𝑒𝑥𝑝(𝑍𝛿 + 𝛼𝑝𝑘 + 𝛾(𝑦 + 𝑑𝑘)) 

 

(2) 

The unconditional demand related to equations (1) and (2) for the simple case of 𝑘 =137 

2 is: 138 

 

𝑙𝑛𝑤 = {

𝑙𝑛𝑤1
∗ 𝑠𝑖 𝑙𝑛𝑤1

∗ < 𝑙𝑛𝑤1

𝑙𝑛𝑤1 𝑠𝑖 𝑙𝑛𝑤1 < 𝑙𝑛𝑤1
∗ 𝑦 𝑙𝑛𝑤1 > 𝑙𝑛𝑤2

∗

𝑙𝑛𝑤2
∗ 𝑠𝑖 𝑙𝑛𝑤2

∗ > 𝑙𝑛𝑤1

 

 

 

(3) 

𝑤 represents the observed water consumption, 𝑤𝑘
∗ = 𝑤𝑘

∗(𝑍, 𝑝𝑘 , (𝑦 + 𝑑𝑘); 𝛼, 𝛾, 𝛿) is the 139 

optimum water consumption in the k block, and 𝑤1 is the kink point. 140 

Equation (3) represents the theoretical model, which is unknown to the researcher. 141 

The econometric model incorporates two error terms, following Burtless and Hausman 142 

[1978], Moffitt [1986], and Hewitt and Hanemann [1995]: 𝜂, which captures the 143 

heterogeneity among households, which is not captured by the sociodemographic and climate 144 

variables 𝑍; and 휀, which represents characteristics that are not observed by either the 145 

researcher or the households [Olmstead et al., 2007]. It is assumed that 𝜂 and 휀 are 146 

independent and normally distributed, with means equal to zero and variances 𝜎𝜂
2 and 𝜎𝜀

2, 147 

respectively. 148 

Considering the aforementioned, the unconditional demand is equal to: 149 

  

𝑙𝑛𝑤 = {

𝑙𝑛𝑤1
∗ + 𝜂 + 휀 𝑠𝑖 − ∞ < 𝜂 < 𝑙𝑛𝑤1 − 𝑙𝑛𝑤1

∗

𝑙𝑛𝑤1 + 휀 𝑠𝑖 𝑙𝑛𝑤1 − 𝑙𝑛𝑤1
∗ < 𝜂 < 𝑙𝑛𝑤1 − 𝑙𝑛𝑤2

∗

𝑙𝑛𝑤2
∗ + 𝜂 + 휀 𝑠𝑖 𝑙𝑛𝑤1 − 𝑙𝑛𝑤2

∗ < 𝜂 < ∞
 

 

 

 

(4) 

When using the linear functional form the conditional demand to a k block is equal 150 

to: 151 

  

𝑤(𝑝𝑘, 𝑦 + 𝑑𝑘) = 𝑍𝛿 + 𝛼𝑝𝑘 + 𝛾(𝑦 + 𝑑𝑘) 

 

(5) 
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Whereas, under the SG the conditional demand is: 152 

  

𝑤(𝑝𝑘, 𝑦 + 𝑑𝑘) = 𝑍𝛿 + 𝛼 (
(𝑦 + 𝑑𝑘)

𝑝𝑘
) + 𝛾 (

1

𝑝𝑘
) 

 

 

(6) 

Since they do not have a logarithmic transformation, the unconditional demand is a 153 

modification of the equation in both cases (3): 154 

  

𝑤 = {

𝑤1
∗ 𝑠𝑖 𝑤1

∗ < 𝑤1

𝑤1 𝑠𝑖 𝑤1 < 𝑤1
∗ 𝑦 𝑤1 > 𝑤2

∗

𝑤2
∗ 𝑠𝑖 𝑤2

∗ > 𝑤1

 

 

 

(7) 

In addition, the econometric model related to (7) incorporates the heterogeneity errors 155 

of households (𝜂) and stochastic (휀): 156 

  

𝑤 = {

𝑤1
∗ + 𝜂 + 휀 𝑠𝑖 − ∞ < 𝜂 < 𝑤1 − 𝑤1

∗

𝑤1 + 휀 𝑠𝑖 𝑤1 − 𝑤1
∗ < 𝜂 < 𝑤1 − 𝑤2

∗

𝑤2
∗ + 𝜂 + 휀 𝑠𝑖 𝑤1 − 𝑤2

∗ < 𝜂 < ∞
 

 

 

(8) 

The incorporation of the error terms allows the estimation of equations (4) and (8) 157 

through maximum likelihood. 158 

3.2 Estimation 159 

Following Hewitt and Hanemann [1995] and Olmstead et al. [2007], the likelihood 160 

function related to the equation (4) is equal to (see appendix for details): 161 

 162 

𝑙𝑛𝐿 = ∑𝑙𝑛

[
 
 
 
 
 
 
 
 
 
 

(
1

√2𝜋

𝑒𝑥𝑝(−𝑠1
∗2/2)

𝜎𝑣

(𝛷(𝑟1
∗)))

+(
1

√2𝜋

𝑒𝑥𝑝(−𝑠2
∗2/2)

𝜎𝑣

(1 − 𝛷(𝑟1
∗)))

+(
1

√2𝜋

𝑒𝑥𝑝(−𝑢1
∗2/2)

𝜎𝜀

(𝛷(𝑡2
∗) − 𝛷(𝑡1

∗)))

]
 
 
 
 
 
 
 
 
 
 

 163 
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Where: 164 

𝜌 = 𝑐𝑜𝑟𝑟(휀 + 𝜂, 𝜂); 𝑣 = 𝜂 + 휀

𝑠𝑘
∗ = (𝑙𝑛𝑤𝑖 − 𝑙𝑛𝑤𝑘

∗(⋅))/𝜎𝑣; 𝑢𝑘
∗ = (𝑙𝑛𝑤𝑖 − 𝑙𝑛𝑤𝑘)/𝜎𝜀

𝑡𝑘
∗ = (𝑙𝑛𝑤1 − 𝑙𝑛𝑤𝑘

∗(⋅))/𝜎𝜂; 𝑟𝑘
∗ = (𝑡𝑘

∗ − 𝜌𝑠𝑘
∗)/√1 − 𝜌2

 165 

Our own calculations, based on the initial work by Moffitt [1986] and Moffitt [1989], 166 

show us that likelihood function for the linear and SG functional forms is similar, with the 167 

following modification: 168 

𝑠𝑘 = (𝑤𝑖 − 𝑤𝑘)/𝜎𝑣; 𝑢𝑘 = (𝑤𝑖 − 𝑤𝑘)/𝜎𝜀

𝑡𝑘 = (𝑤1 − 𝑤𝑘
∗(⋅))/𝜎𝜂; 𝑟𝑘 = (𝑡𝑘 − 𝜌𝑠𝑘)/√1 − 𝜌2

 169 

 170 

3.3 Expected value and elasticities 171 

The main challenge in the DCC model is the estimation of the expected value and the 172 

elasticities. Since the model captures two decisions, the discrete and continuous decisions, 173 

the expected consumption is the sum of the consumption at each tier and kink point, weighted 174 

by the probability of being in each tier or kink point.  In other words, the expected 175 

consumption depends on all prices and kink points, and not solely on the current consumption 176 

level.  Consumption is the result of a discrete choice among different tiers and, therefore, the 177 

expected value needs to capture the stochastic nature of that choice.   178 

For the log–log and semi-log functional forms, it can be shown that that the 179 

conditional consumption is:  180 

𝑤𝑘
∗(𝑝𝑘, 𝑦 + 𝑑𝑘) = 𝑒𝑥𝑝(𝑍𝛿)𝑝𝑘

𝛼(𝑦 + 𝑑𝑘)𝛾𝑒𝑥𝑝(𝜂)𝑒𝑥𝑝(휀) 181 

𝑤𝑘
∗(𝑝𝑘 , 𝑦 + 𝑑𝑘) = 𝑒𝑥𝑝(𝑍𝛿 + 𝛼𝑝𝑘 + 𝛾(𝑦 + 𝑑𝑘))𝑒𝑥𝑝(𝜂)𝑒𝑥𝑝(휀) 182 

Since both 𝜂 and 휀 are normally distributed, 𝑒𝑥𝑝(𝜂) and 𝑒𝑥𝑝(휀) are distributed 183 

lognormal. [Olmstead et al., 2007] show that the expected value for the first functional form 184 

for the simple case of two tiers is:  185 
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𝐸(𝑊) = 𝑒𝜎𝜂
2/2𝑒𝜎𝜀

2/2(𝑤1
∗(𝑝1, 𝑦 + 𝑑1) ∗ 𝜋1

∗ + 𝑤2
∗(𝑝2, 𝑦 + 𝑑2) ∗ 𝜋2

∗) + 𝑒𝜎𝜀
2/2𝑤1 ∗ 𝜆1

∗  

 

(9) 

With  186 

𝜋1
∗ = 𝛷 (

𝑙𝑛(𝑤1/𝑤1
∗)

𝜎𝜂
− 𝜎𝜂)

𝜋2
∗ = 1 − 𝛷 (

𝑙𝑛(𝑤1/𝑤2
∗)

𝜎𝜂
− 𝜎𝜂)

𝜆1
∗ = 𝛷 (

𝑙𝑛(𝑤1/𝑤2
∗)

𝜎𝜂
) − 𝛷 (

𝑙𝑛(𝑤1/𝑤1
∗)

𝜎𝜂
)

 187 

 188 

Calculating the elasticity is a little more complex. Hewitt and Hanemann [1995] 189 

calculate the elasticity, simulating a change in 1% of all prices and recalculating the expected 190 

value. Olmstead et al. (2007) formalize this approach, developing an analytical expression 191 

for the price elasticity as the change in the expected value after a change in a proportion 𝜃 in 192 

the price vector. They show that, for the log–log functional form the elasticity is: 193 

 

𝜕𝐸(𝑊)

𝜕𝜃

1

𝐸(𝑊)
= (

𝛼(𝑤1
∗ 𝜓1 + 𝑤2

∗ 𝜓2 + 𝑤1(𝜒1 − 𝜒2))

+𝛾 (𝑑2 (
𝑤2

∗

𝑦 + 𝑑2
) ( 𝜓2 − (

𝑤1

𝑤2
∗)𝜒2))

) 𝛺⁄  

 

 

 

(10) 

In which: 194 

𝜓1 = 𝜋1
∗ −

1

𝜎𝜂
𝜙 (

𝑙𝑛(𝑤1/𝑤1
∗)

𝜎𝜂
− 𝜎𝜂)

𝜓2 = 𝜋2
∗ +

1

𝜎𝜂
𝜙 (

𝑙𝑛(𝑤1/𝑤2
∗)

𝜎𝜂
− 𝜎𝜂)

𝜒1 =
1

𝜎𝜂 ∗ 𝑒𝜎𝜂
2/2

𝜙 (
𝑙𝑛(𝑤1/𝑤1

∗)

𝜎𝜂
)

𝜒2 =
1

𝜎𝜂 ∗ 𝑒𝜎𝜂
2/2

𝜙 (
𝑙𝑛(𝑤1/𝑤2

∗)

𝜎𝜂
)

𝛺 = 𝑤1
∗(𝑝1, 𝑦 + 𝑑1) ∗ 𝜋1

∗ + 𝑤2
∗(𝑝2, 𝑦 + 𝑑2) ∗ 𝜋2

∗ + 𝑒−𝜎𝜀
2/2𝑤1 ∗ 𝜆1

 195 
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We followed the approach of Olmstead et al. [2007] and calculated the expected value 196 

and elasticity for the other functional forms. For the semi-log function, we obtained: 197 

 

𝜕𝐸(𝑊)

𝜕𝜃

1

𝐸(𝑊)
= (

𝛼(𝑤1
∗𝑝1 𝜓1 + 𝑤2

∗𝑝2 𝜓2 + 𝑤1(𝑝1𝜒1 − 𝑝2𝜒2))

+𝛾 (𝑤2
∗𝑑2 ( 𝜓2 − (

𝑤1

𝑤2
∗)𝜒2))

) 𝛺⁄  

 

 

(11) 

 198 

Similar procedures can be applied to the linear and SG functions. The only difference 199 

is that the error terms are additive. For the linear function the conditional demand is: 200 

𝑤𝑘
∗(𝑝𝑘 , 𝑦 + 𝑑𝑘) = 𝑍𝛿 + 𝛼𝑝𝑘 + 𝛾(𝑦 + 𝑑𝑘) + 𝜂 + 휀 201 

And for the SG: 202 

𝑤𝑘
∗(𝑝𝑘 , 𝑦 + 𝑑𝑘) = 𝑍𝛿′ + 𝛼 (

(𝑦 + 𝑑𝑘)

𝑝𝑘
) + 𝛾 (

1

𝑝𝑘
) + 𝜂 + 휀 203 

 204 

The expected values are [Moffitt, 1989]: 205 

 

𝐸(𝑊) = 𝑤1
∗𝜋1 + 𝑤2

∗𝜋2 + 𝑤1𝜆1 + 𝜎𝜂 (𝜙 (
𝑤1 − 𝑤2

∗

𝜎𝜂
) − 𝜙 (

𝑤1 − 𝑤1
∗

𝜎𝜂
)) 

 

 

(12) 

Where,  206 

𝜋1 = 𝛷 (
𝑤1 − 𝑤1

∗

𝜎𝜂
)

𝜋2 = 1 − 𝛷 (
𝑤1 − 𝑤2

∗

𝜎𝜂
)

𝜆1 = 𝛷 (
𝑤1 − 𝑤2

∗

𝜎𝜂
) − 𝛷 (

𝑤1 − 𝑤1
∗

𝜎𝜂
)

 207 

And the elasticity is: 208 
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𝜕𝐸(𝑊)

𝜕𝜃

1

𝐸(𝑊)
 = ((𝛼(𝑝1𝜋1 + 𝑝2𝜋2) + 𝛾 𝑑2𝜋2))/𝐸(𝑊)  

 

 

(13) 

Finally, the elasticity for the SG is: 

𝜕𝐸(𝑊)

𝜕𝜃

1

𝐸(𝑊)
 =

(

 
 

𝛼 (
1

𝑝2
𝑑2 𝜋2  −

𝑦 + 𝑑1

𝑝1
  𝜋1  −

𝑦 + 𝑑2

𝑝2
 𝜋2)

 −𝛾 (
1

𝑝1
𝜋1  +

1

𝑝2
 𝜋2)

)

 
 

𝐸(𝑊)⁄  

 

 

 

(14) 

  

3.4 Selection criteria 209 

 210 

We can use goodness-of-fit criteria to compare functional forms if we are interested 211 

in the capacity to explain the variance of the dependent variable. Alternatively, we can use 212 

prediction criteria if we are interested in predicting the value of the dependent variable under 213 

different scenarios for the explanatory variables. The goodness-of-fit criteria that we 214 

calculated are the Akaike information criteria (AIC), defined as: 215 

 

𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 2𝐾 

 

(15) 

With 𝑙𝑜𝑔𝐿 the logarithmic value of the likelihood function, k, corresponds to the 216 

number of parameters in the model. The choice criteria dictate that we choose the model with 217 

the lowest AIC. On the other hand, we will use the Mean Square Error as a prediction 218 

criterion, which corresponds to the mean value of the squared difference between the 219 

predicted value and the observed value of the dependent variable. We estimate the model 220 

using 80% of the sample, chosen randomly, and predicted the expected value for the 221 

remaining 20% of the sample [Grootendorst, 1995]. The statistic is: 222 

 

𝑀𝑆𝐸𝑗 =
1

𝑛
∑(�̂�𝑖𝑗 − 𝑦𝑖)

2

𝑛

𝑖=1

 

 

 

(16) 

The sum is extended to the individuals of the forecast subsample �̂�𝑖𝑗 , which 223 

corresponds to the predicted value of the amount of water consumption by individual 𝑖𝑡ℎ, 224 
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using the estimator 𝑗𝑡ℎ; 𝑦𝑖 is the observed water consumption. If the MSE is close to zero, 225 

there is no prediction error. However, if the MSE takes on values tending toward a positive 226 

infinite the predictive ability is very poor.  227 

3.5 Hypothesis Testing 228 

Our main hypothesis is that there are no differences in the price elasticity (or 229 

consumption expected value) between different functional forms. Following [Turner and 230 

Rockel, 1988] the general hypothesis for our analysis can be written as: 231 

𝜃 = 𝐺(𝛽, 𝛾) 232 

where 𝛽 is a vector of parameters 𝑘×1 of a first functional form 𝑌1 = 𝑓(𝑋, 𝛽, 휀1), and 𝛾 is a 233 

vector of 𝑞×1 parameters estimated from a second functional form  𝑌2 = 𝑓(𝑍, 𝛾, 휀2); 휀1 and 234 

휀2 are serially independent and homoscedastic for different observations, that is, 235 

𝐸(휀1𝑡휀2𝑡′) = 0, for 𝑡 ≠ 𝑡′, but correlated for the same observation, with 𝐸(휀1𝑡휀2𝑡) = 𝜎12.  𝐺 236 

is a continuously differentiable function of the parameters 𝛽 and 𝛾.  In this case, G represents 237 

the test hypothesis that there is no difference between the expected consumption level (price 238 

elasticity) of the two functional forms. Considering that the estimators of maximum 239 

likelihood of 𝛽 and 𝛾 are consistent [Amemiya, 1985] and that 𝜃 = 𝐺(�̂� , 𝛾) is a consistent 240 

estimator of 𝜃 = 𝐺(𝛽, 𝛾), the variance for this hypothesis is obtained by the delta method as: 241 

𝑉(𝜃) = 𝑔′𝛺𝑔 242 

where 𝑔 is a vector (𝑘 + 𝑞)×1 of first partial derivatives (or gradient) of 𝐺, with respect to  243 

𝛽 and 𝛾, and 𝛺 is a matrix (𝑘 + 𝑞)×(𝑘 + 𝑞) of asymptotic variances and covariances equal 244 

to: 245 

𝛺 = [𝐴 𝐶′
𝐶 𝐵

] 246 

where 𝐴 is the 𝑘×𝑘 matrix of variances and covariances of �̂�, B is the 𝑞×𝑞 matrix of 247 

variances and covariances of 𝛾, and 𝐶 is the 𝑞𝑥𝑘 matrix of covariances between �̂� and 𝛾, 248 

defined as:  249 
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𝐶 = 𝐵
𝜕𝑙2
𝜕𝛾

(
𝜕𝑙1
𝜕𝛽

)
′

𝐴 250 

𝜕𝑙2 𝜕𝛾⁄  is the gradient vector of the likelihood function of the model 2, and  𝜕𝑙1 𝜕𝛽⁄   is the 251 

gradient vector of model 1. 252 

4 Data 253 

We used a random sample consisting of a panel of 490 households from the city of 254 

Manizales, Colombia, covering water consumption between January 2001 and December 255 

2013.  256 

The price system of residential water in Manizales is an increasing two-block tariff. 257 

The first consumption block corresponds to the range that goes from 0 to 20 cubic meters. 258 

Consumers must pay an overconsumption tariff if they exceed 20 cubic meters. Additionally, 259 

we have information about characteristics of each household, such as number of bathrooms, 260 

family size, washing machine available at home, type of housing, and climate variables, such 261 

as temperature and precipitation. Table 2 shows descriptive statistics.  262 

 263 

Table 2: Descriptive Statistics. 264 

Variable Average Std. Dev. Minimum  Maximum 

Household Characteristics 

House (1 for house, 0 otherwise) 0.895 0.307 0 1 

Washing Machine 0.873 0.333 0 1 

Number of Bathrooms 1.373 0.575 1 4 

Family Size 3.574 1.518 1 10 

Consumption, price, and income variables 

Consumption 17.566 11.201 1 231 

𝑝1 1132.557 210.622 700.310 1322.560 

𝑝2 1137.548 202.388 850.040 1322.560 

𝑤1  20 0 20 20 

𝑦 + 𝑑1 1260350 868096 587897.3 5896322 

𝑦 + 𝑑2 1260450 868090.8 587897.3 5896322 

Climate variables 
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Temperature 17.082 0.690 15.250 20.050 

Precipitation 181.862 95.799 8.740 541.440 

5 Results 265 

As shown in Table 3, our results are in line with the existing literature for the four 266 

models tested. All the coefficients are significant at 99% confidence level. We found a 267 

positive relationship between water consumption and family size, number of bathrooms, 268 

house (versus apartment), and the existence of a washing machine. The parameter of climate 269 

variables shows a positive relationship between both temperature/precipitation and water 270 

demand. 271 

The Akaike information criterion suggests that the log-log functional form and semi-272 

log functional form have the best goodness of fit, with only a minor difference between them. 273 

On the other hand, the MSE suggests that both the linear and the SG models are better for 274 

prediction.  275 

 276 

 277 

Table 3: Results of the discrete-continuous model estimation 278 

 Log-log Semi-log Linear Stone–Geary 

Constant 5.807∗∗∗ 

(0.138) 

3.385∗∗∗ 

(0.081) 

3.530∗∗∗ 

(0.132) 

1.796∗∗∗ 

(0.125) 

House 0.306∗∗∗ 

(0.009) 

0.295∗∗∗ 

(0.009) 

0.313∗∗∗ 

(0.015) 

0.313∗∗∗ 

(0.015) 

Number of Bathrooms 0.076∗∗∗ 

(0.005) 

0.082∗∗∗ 

(0.005) 

0.165∗∗∗ 

(0.008) 

0.166∗∗∗ 

(0.008) 

Family Size 0.051∗∗∗ 

(0.002) 

0.052∗∗∗ 

(0.002) 

0.058∗∗∗ 

(0.003) 

0.058∗∗∗ 

(0.003) 

Washing Machine 0.119∗∗∗ 

(0.008) 

0.126∗∗∗ 

(0.008) 

0.074∗∗∗ 

(0.013) 

0.077∗∗∗ 

(0.013) 

Temperature 

 

−0.048∗∗∗ 

(0.004) 

−0.050∗∗∗ 

(0.004) 

−0.091∗∗∗ 

(0.007) 

−0.092∗∗∗ 

(0.007) 

Precipitation 

 

−0.003∗∗∗ −0.003∗∗∗ −0.005∗∗∗ −0.005∗∗∗ 
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(3 ∗ 10−4) (3 ∗ 10−4) (4 ∗ 10−4) (0.001) 

Price 

 

−0.496∗∗∗ 

(0.014) 

−4 ∗ 10−4∗∗∗
 

(1 ∗ 10−5) 

−0.001∗∗∗ 

(2 ∗ 10−5) 

 

 

Income  

 

0.078∗∗∗ 

(0.005) 

3 ∗ 10−5∗∗∗
 

(3 ∗ 10−6) 

3 ∗ 10−6∗∗∗
 

(5 ∗ 10−7) 

 

 

Income/Price 

 

 

 

 

 

 

 

3 ∗ 10−5∗∗∗
 

(5 ∗ 10−6) 

1/Price  

 

 

 

 

 

8.742∗∗∗ 

(0.258) 

𝜎𝜂 

 

0.478∗∗∗ 

(0.113) 

0.504∗∗∗ 

(0.050) 

0.946∗∗∗ 

(0.031) 

0.884∗∗∗ 

(0.045) 

𝜎𝜀 

 

0.462∗∗∗ 

(0.116) 

0.435∗∗∗ 

(0.057) 

0.544∗∗∗ 

(0.053) 

0.639∗∗∗ 

(0.062) 

N 63724 63724 63724 63724 

AIC 128697.253 128792.105 191662.473 191724.893 

MSE 119.523 119.716 118.611 118.661 

 279 

Table 4 shows the average values of the expected consumption and the price elasticity 280 

for each functional form, the standard error calculated through the delta method, and a 281 

confidence interval at a 95%. 282 

The average expected value of the water consumption ranges between 17.56 and 283 

18.16 cubic meters, which is a value close to the observed average (17.5 cubic meters). The 284 

average value of the elasticity lies between -0.47, for the SG functional form, and -0.56, 285 

under the linear functional form. All elasticities are lower than 1 (in absolute value), and, 286 

consequently, the price elasticity is inelastic under all functional forms.  287 

 288 

Table 4: Average values of the expected consumption and the price elasticity. 289 

 Logarithmic Semi logarithmic Linear Stone–Geary 

Expected Value 18.160∗∗∗ 18.164∗∗∗ 17.566∗∗∗ 17.568∗∗∗ 

(St. Err.) (0.054) (0.054) (0.043) (0.043) 

C.I. by 95% (18.055;  18.265) (18.059;  18.269) (17.481;  17.650) (17.483;  17.653) 

Elasticity −0.495∗∗∗ −0.531∗∗∗ −0.561∗∗∗ −0.477∗∗∗ 

(St. Err.) (0.014) (0.015) (0.015) (0.013) 
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C.I. by 95% (−0.522;  −0.467) (−0.561;  −0.502) (−0.591;  −0.531) (−0.502;  −0.451) 

Standard errors between parentheses. *** p<0.001 ** p<0.01 * p<0.05 290 

Table 5 shows the test statistics for the difference (pair comparisons) of expected 291 

consumption among all the functional forms. It is not possible to reject the hypothesis for 292 

equality of expected consumption either between the logarithmic and semi-log forms or 293 

between the linear and SG forms under 95% confidence level. However, it is possible to state 294 

that, between the log-log and the linear functional forms, the expected water consumption 295 

average is statistically different, and, that this is also the case between the log–log and SG 296 

forms, between the semi-log and linear forms, and between the semi-log and SG forms.  297 

 298 

Table 5: Results of the mean difference test for expected consumption. 299 

 Logarithmic Semi logarithmic Linear Stone–Geary 

Logarithmic - −0.003 

(−0.05) 

0.594∗∗∗ 

(8.65) 

0.591∗∗∗ 

(8.61) 

Semi logarithmic - - 0.597∗∗∗ 

(8.67) 

0.595∗∗∗ 

(8.65) 

Linear - - - −0.002 

(−0.04) 

t-statistics between parenthesis. *** p<0.001 ** p<0.01 * p<0.05 300 

Finally, Table 6 shows the results of the hypothesis test of difference in price elasticity 301 

among models. In this case, we reject the hypothesis of equal price elasticity between the 302 

log-log and the linear and the SG, between the semi-log and the SG, and between the linear 303 

and the SG. We cannot reject the hypothesis of equal price elasticity either between the log–304 

log and semi-log and SG, or between the semi-log and the linear. 305 

 306 

Table 6: Results of the mean difference test for the price elasticity. 307 

 Logarithmic Semi logarithmic Linear Stone–Geary 

Logarithmic - 0.036 

(1.79) 

0.066∗∗∗ 

(3.22) 

−0.017 

(−0.94) 

Semi logarithmic - - 0.029 

(1.40)  

−0.054∗∗∗ 

(2.75) 
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Linear - - - −0.084∗∗∗ 

(−4.34) 

t-statistics between parenthesis. *** p<0.001 ** p<0.01 * p<0.05 308 

Our estimates differ from the one reported by Hewitt and Hanemann [1995], who 309 

found values above 1 (in absolute value). Nevertheless, our results are similar to the 310 

elasticities reported by Olmstead et al. [2007], who found values between -0.609 and -0.331.  311 

Compared with the values reported by Dalhuisen et al. [2003], our results are in line with 312 

more than 80% of the previous literature and also some recent papers, such as Grafton et al. 313 

[2011], Polycarpou and Zachariadis [2012], Clavijo [2013], and Porcher [2013]. 314 

Nevertheless, there are also recent studies that provide more elastic demand functions—see 315 

Miyawaki et al. [2010], Miyawaki et al. [2011] and Miyawaki et al. [2014].  316 

From a policy perspective, our hypothesis tests shed light on the relevance of the 317 

chosen function form, for both the expected consumption and the price elasticity. In the case 318 

of price elasticity, which is a key parameter to assess the welfare effects of water policies, 319 

the use of the log-log, the semi-log, and the SG should provide the same information 320 

(statistically). The same holds for the selection between the semi-log and the linear form. 321 

However, the hypothesis test shows that the use of the log-log and the linear functional forms, 322 

in comparison with other functional forms (log–log – linear, log–log – SG, semi-log – SG, 323 

and linear – SG) will provide results that are statistically different. This issue is important, 324 

considering that these two functional forms are the most used in the literature (see Table 1). 325 

6 Conclusions 326 

We provide evidence that the selection of a functional form for the water demand 327 

equation in a discrete-continuous choice model affects the value of both the expected 328 

consumption and the price elasticity. We provide evidence using the most common functional 329 

forms reported in the literature (linear, semi-log, and log–log) and include a less familiar 330 

functional form (SG). 331 

Our results are consistent with most of the previous literature; the expected 332 

consumption for all functional forms is around the observed consumption, and the price 333 

elasticities are less than 1 (in absolute value), which indicates that water is an inelastic good. 334 
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Furthermore, the Akaike information criterion suggests that the log–log and the semi-log 335 

functional forms have the best goodness of fit. Nevertheless, the linear and SG functional 336 

forms show the best prediction power, measured by mean square error. Therefore, the 337 

selection of the appropriate functional form depends on the researcher´s objectives. 338 

Finally, based on the hypothesis test conducted, the selection of the functional form 339 

will have consequences for the estimation of key parameters of water demand. To provide 340 

better information to both the policy makers and the water utilities companies, we 341 

recommend estimating several functional forms reporting a range of values for both the 342 

expected consumption and the price elasticities. 343 
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