APPLICATION OF CONSISTENT CONTACT RECREATION WATER QUALITY STANDARDS ACROSS HYDROLOGICAL EXTREMES: REASONABLE OR RIDICULOUS?

DR. LUCAS GREGORY

Research Scientist Texas Water Resources Institute

Co-authors: Stephen Muela & Dr. Kevin Wagner

XVI World Water Congress

May 31, 2017

Cancun, Mexico

WATER QUALITY STANDARDS

- Describe desired condition of waterbody
- Form legal basis for controlling pollution
- Advise user of potential health risks
- Consist of:
 - Designated Uses
 - Numeric Criteria
 - Antidegradation Requirements
 - General Policies

CONTACT RECREATION

- Primary contact activities with presumed significant risk of water ingestion
 - Swimming, children wading, water skiing, surfing, diving, tubing, whitewater sports (kayaking, rafting)
- Secondary contact 1 commonly occurring activities with limited body contact; less ingestion risk than primary contact
 - Adults wading, fishing, canoeing, kayaking, boating
- Secondary contact 2 limited body contact activities with less ingestion risk due to physical waterbody characteristics and limited access
 - Fishing, canoeing, kayaking, boating
- Noncontact activities with no significant risk of ingestion; where activities should not occur due to unsafe conditions
 - Birding, hiking, biking; contact prohibited by law

RECREATION TYPES

PROTECTING HUMAN HEALTH

 Contact recreation standards provide reasonable assurance that human health risk from fecal pollution is acceptable

Feces contains

- Pathogens including cryptosporidium, pathogenic E. coli, and giardia
- Non-pathogenic organisms: many strains of E. coli and fecal coliform
 - E. coli commonly used as Fecal Indicator Bacteria
- Presence of Fecal Indicator Bacteria in water considered indicative of recent fecal contamination
- Concentrations correlate to human health risk

E. COLI FATE IN THE ENVIRONMENT

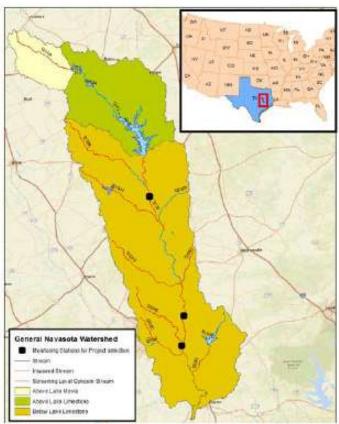
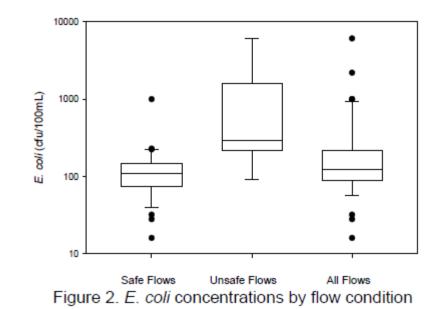
- E. coli can survive for a period of time outside of the host organism in soil, water, sediment
- Survival influenced by temperature, moisture level, available nutrition, salinity, solar radiation, and predation levels
 Levels of each vary in soil, water, and sediment
- Long-term survival has been documented in all environments
 - **•** E. coli may not be associated with recent contamination events
 - Surviving E. coli can contribute to measured quantity in water samples
 - Baseflow contributions ~90%
 - Stormflow increases of ~ 2 orders of magnitude

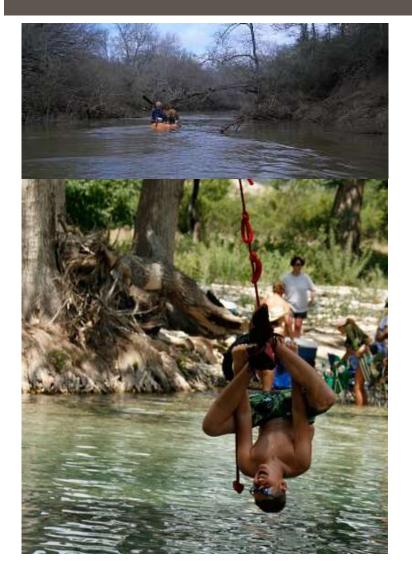
CONTACT RECREATION STANDARDS APPLICATION IN TEXAS

- E. coli
 - Public Lakes
 - **l** Rivers
 - Creeks
- Enterococcus
 Bays
 Estuaries

- No considerations for flow condition
- No risk conferred to the person recreating due to type of activity
- No consideration of use type relative to flow conditions

NAVASOTA RIVER CASE STUDY


Figure 1. Navasota River watershed in Central Texas, USA

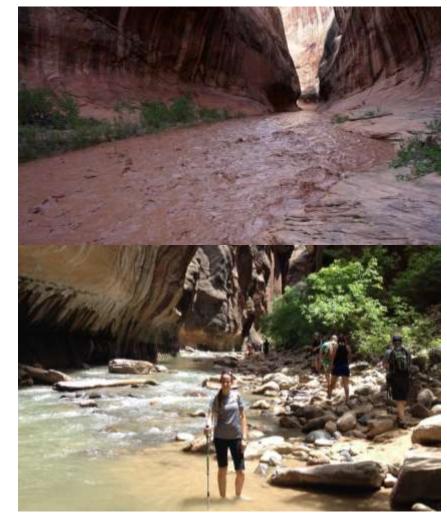

able	e_1. E. coll concentration descriptive statistics by flow catego					
	E. coli	N	Median	Standard	Geometric	
	concentrations			Deviation	Mean	
	CFU/100mL					
	Safe flows	32	110	163.1	106.4	
	Unsafe flows	9	290	1835.7	510.4	
	All flows	41	124	978.9	150.1	
	CFU/100mL Safe flows Unsafe flows	9	290	163.1 1835.7	106.4 510.4	

Table 1. E. coli concentration descriptive statistics by flow category

HYDROLOGIC CONDITIONS CHANGE RECREATION

POLICY RECOMMENDATION

- Risk based water quality standard
- Consider the number of people engaged in recreation, appropriate type of recreation, and flow condition
- Example considering 5,000 swimmers and only 50 whitewater rafters per year

Illness rate/1000 people = [Log(*E.coli* geometric mean)-1.249]/0.1064

At 126 cfu/100 mL *E. coli* concentration: 40 swimmers get sick; only 0.4 whitewater rafters get sick

Applying less restrictive standard to rafting conditions only still yields adequate human health protection

At 630 cfu/100 mL: only 0.72 whitewater rafters get sick

IMPLICATIONS

- Requires more data: water quality and recreation use
- Must consider type and levels of waterbody use
- People will assume increased level of risk when recreating
- Can reduce the number of waterbodies considered impaired
- Can reduce costs for restoring impaired waterbodies

QUESTIONS?

Lucas Gregory LFGregory@ag.tamu.edu