Addressing decreasing water availability for the mining industry using cost-benefit analysis

World Water Congress 2017

Douglas Aitken, Alex Godoy-Faúndez, Marcelo Vergara, Fernando Concha and Neil McIntyre

Introduction – Mining and water scarcity

Figure 1. Copper mining operations in Chile

Figure 2. Water scarcity indices and allocation

Introduction – The upshot

Negative media coverage of the industry

Water use related issues have strongly affected the industry not just in Chile but around the world.

Spending on water related infrastructure almost doubled from 2011 to 2014 (\$7.7bn to \$13.6bn) (WWI 2014)

Figure 3. Number of disputes over water resources

Transition from freshwater to seawater

Figure 4. Projected levels of water consumption in the mining industry (COCHILCO 2016)

Research question – what's the most cost-effective way to replace freshwater?

Model developed to consider the use of:

- 1. Desalinated seawater
- 2. Raw seawater
- 3. Seawater precipitated with lime

Each water source with the implementation of water saving strategies:

- a. Tailings thickening + synthetic dust suppression
- b. Tailings filtration + synthetic dust suppression

Scenarios of operational models

Figure 5. Operational models tested

Basic operational model and assumptions

Ore throughput: 150,000 tpd Solids content of tailings: 32% Distance to coastline: 160 km Elavation: 0-4,000 m Life span: 25 years Desalination plant: 100,000 m³ (Northern Chile) Tailings solids content following thickening: 60% Tailings solids content following filtration: 83.5% Electricity cost: \$0.15/kWh

Water losses for each scenario

Process	Base case - S1, S2 & S3 (m ³ /day)	Scenario 4 (m³/day)	Scenario 5 (m ³ /day)
Road dust suppression	10,560	1,620	1,620
Human consumption	174	174	174
Raw water evaporation	6.6	6.6	6.6
Process water tank evaporation	10.2	10.2	10.2
Primary crusher	1080	1080	1080
Stockpile	360	360	360
Flotation cell	20.1	20.1	20.1
Concentrate thickener	3.6	3.6	3.6
Final concentrate	267	267	267
Tailings storage facility	96,076	78,036	29,164
Tailings thickener	-	52	-
Total losses	108,558	90,570	32,706

Net present values of scenarios 1, 2 and 3

Net present values for scenarios 1, 4a and 4b

Net present values of scenarios 2, 4b and 5b

Net present values of scenarios 3, 4c and 5c

Comparison of cost-effectiveness between water saving strategies

	Dust suppressant	Tailings thickening	Tailings filtration
Water saved (m ³ /day)	8,940	235,574	315,208
NPV (\$M)	13.7	459	1,912
NPV/m ³ (\$/m ³)	0.17	0.21	0.41

Sensitivity analysis of Net Present Values

Desalinated seawater

Raw seawater

Lime precipitated seawater

Conclusions

The use of seawater in copper mining is costly but ultimately necessary in many mining areas

Desalination is expensive – raw seawater or simple treatment is preferred

Thickening of tailings is the most cost-effective water saving option at low levels of elevation

Filtration of tailings is the most cost-effective option at elevations greater than 1,600 m

Further research

Further experimental analysis of lime precipiation and copper recovery rates

Analysis of the impact upon operational profitability of the proposed scenarios

Analysis of the environmental impacts and risks of the proposed scenarios

Acknowledgements

The authors would like to thank the Conicyt/Fondap Project 15130015 Centro de Recursos Hídricos para la Agricultura y la Minería (CHRIAM)

The authors would also like to thank the Sustainable Minerals Institute at the University of Queensland for collaborating on this research.

Daitken@udd.cl

