

Towards sustainable drinking water treatment - the use of natural coagulant in the removal of microalgae

Moreti L. O. R.¹, Mantovani D.¹, Vieira M. F.¹, Vieira A. M. S.¹, Beltran L. B.², Telles G.¹, Bassetti F. J.³, Gomes R. G.¹, Araujo A. A.⁴, Bergamasco R.¹

- (1) State University Maringa, Av. Colombo, 5790, CEP 87020-900, Maringá/PR, Brazil.
- (2) Federal University Tecnologica de Campo Mourão, R. Rosalina Maria Ferreira, 1233, CEP 87301-899, campo Mourão/PR, Brazil.
- (3) Federal University Tecnologica Curitiba, R. Dep. Heitor Alencar Furtado, 5000, CEP, 81280-340, Curitiba/PR, Brazil.
- (4) Federal University Sergipe, Av. Marechal Rondon, CEP 49100-000, São Cristóvão/SE, Brazil.
- *li.moreti@hotmail.com

Introdution

The presence of microalgae in drinking water supply can cause significant disturbances. The process water clarification (coagulation/flocculation/dissolved air flotation, C/F/DAF) are used due to good efficiency for removal this contaminant. As a future strategy, the application of natural coagulants to water treatment emerges as a promising ecologically and socially sustainable option. Thus, the aim of this work is the application of the C/F/FAD process with *Moringa oleifera* integral and degreased seeds to removal *Microcystis aeruginosa* from water.

Materials and Methods

Microcystis aeruginosa cultive

- ✓ ASM-1 medium.
- ✓ Cels. concentration 10⁶ cel.mL⁻¹

Preparation of coagulants

- ✓Integral powder seeds: 5g of peeled and crushed were dried at 40°C until weight.
- ✓ Degreased powder seeds: 5g of peeled and crushed were degreased with ethanol according methodology describe by Sanchez-Martín et al. (2010).
- ✓ It was fixed 100 mg.L^{-I} of *Moringa oleifera* powder seed for each coagulant.

C/F/FAD assays

It was used "Flotest" equipament with the following operations conditions according Moreti et al. (2015):

- ✓ Rapid mixture gradient (RMG): 1200 s⁻¹
- ✓ Rapid mixture time (RMT): 20 s
- ✓ Slow mixture gradient (SMG): 15 s⁻¹
- ✓ Slow mixture time (SMT): 20 min
- ✓ Saturation time (ST): 4 min
- ✓ Saturation pressure (SP): 600 Kpa

✓ Recirculation (R): 30%

Results and Discussion

<u>Characterization of Contaminated water with</u> <u>Microcystis aeruginosa</u>

Quality parameters	Contaminated Water	
Color	182 uH (1)	
Turbidity	35.1 NTU	
Chlorophyll-a	160.2 μg.L ⁻¹	
UV _{254nm}	0.082 cm ⁻¹	
Celular concentration	2.3 x 106 cel.mL ⁻¹	
Potencial Zeta	-16,64 mV	
DOC	3.4 mg.L ⁻¹	

(1) Hazen unit = $(mg Pt-Co.L^{-1})$

C/F/FAD process

	Mo _{int}	Mo _{deg}
Color (%)	64,56 ± 7,3	72,43 ± 5,2
Turbidity (%)	60,01 ± 7,1	77,81 ± 4,5
UV _{254nm} (%)	28,63 ± 9,4	45,58 ± 8,8
Chlorophyll-a (%)	82,4 ± 1,8	91± 3,4
Potencial Zeta (mV)	-13,77	-8,66
DOC (mg.L ⁻¹)	12,4	14,5

It was observed that residual values of dissolved organic carbon (DOC) were increased in the water treated for the both coagulants based *Moringa oleifera*,

Coagulants	Potencial Zeta (mV)	
Mo _{int}	7.87	
Mo _{deg}	9.45	

Conclusion

It was observed that color, turbidity, chlorophyll-a and UV_{254nm} removal values for Mo_{deg} were more efficient than Mo_{int} and for both coagulants had an increase for DOC.

In relation to potencial zeta, the values after the assays were more negative for Mo_{in} than Mo_{deg} , showing the particles neutralization, as the values obtained for coagulants.