Estimation of the damage cost on compound water related disaster in Japar using 2D non-uniform flow model

Ise Bay Typhoon in 1959 : The greatest damage after WW II The coincidence of flood and storm surge

YUKAKO TANAKA, SO KAZAMA, DAISUKE KOMORI, MASAHIRO AKIMA Graduate School of Engineering, Tohoku University, Sendai,

Background

Compound

 Typhoons which brought particularly enormous damage Typhoon Muroto (1934) Makurazaki Typhoon (1945) Ise Bay Typhoon (1959)
...The coincidence of flood and storm surge

Single

A flood (Typhoon No. 18, 2015) Kinu River burst its banks for the first time in 29 years A flood (Typhoon No. 10, 2016) The typhoon hit the Tohoku district for the first time

Background

2

It is necessary for Japan to evaluate quantitatively the risk of flood, storm surge, compound disaster and compare them

Previous studies

3

Floods

Flood damage estimations using the distribution of rainfall causing any return period of flood (Tezuka *et al.*,2014 etc.)

Storm

Analysis on storm surge inundation damage using numerical models (Suzuki, 2008 etc.)

Many studies have done on impacts on each flood and storm surge

4

Estimation on the damage cost of compound disaster that flood and storm surge happened at the same time (Akima *et al.*, 2016)

! The inundation depth was estimated on the condition that highest tide level stay constant so far as the storm surge flooding calculation

! The difference between the tide level and the ground elevation was regarded as the inundation depth of storm surge

The objective of my

to calculate the inuridation depth which more similar to the jactual phenomenon

Data set ~single disasters~

Floods

the distribution of causing any interview of (Tezukafletall.,2014)

Storm

Any return period of the tide level deviation calculated by means of frequency analysis

Data set ~compound disasters~6

Compound disaster : A low pressure bring flood and storm surge one after another at the <u>same place</u> in 4 days

Method

7

prices per unit of area

use

calculated by each land

Input to 2D non-uniform flow model

Damage cost

Inundation

 Rainfall : 0~24h (constant)

Tide level :
0~24h (time

series)

Result ~damage cost distribution 6

Result ~difference from previous studies~10

15.2%

The damage cost of compound disaster in this study is smaller than that in previous study (Akima *et al.*, 2016) This difference could be caused by the difference in offiliationaves to the land Niigata, Ishikawa, Kochi...particularly overvalued

Result~comparing the risk of each event~11

Annual expected damage cost ware estimated considering water disasters control projects (Af uoillid) 1,000 800 The greatest risk is brought by : Flood 800 Storm surge annual dapeagedcost 600 Compound disaster 400 200 Storm Flood Compound 175 350 700km 0 disaster surge

Floods pose the greatest

80% of prefectures: Storm surge<Compound disaster<Flood Useful for efficient adaptation method against water disasters

Conclusions

Objective

to evaluate quantitatively the risk of water related disaster and compare them

Results

1. Improvement of Flood simulation time series variation of tide level was taken into the mode

2. Change in the arrival time of storm surge damage cost reaches a peak on the condition thattime of the highest tide level is set at 30 aftersrain started

3. Comparison of the risk of each disaster Storm surge<Compound disaster<Flood