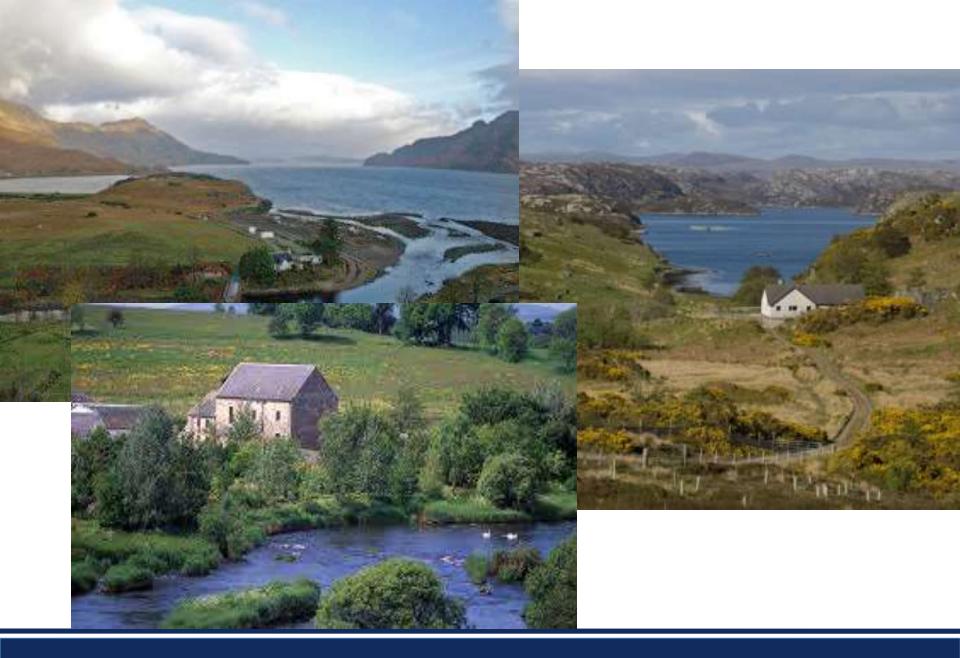


#### An Evaluation of Water Treatment Technologies for Sustainable Rural Communities.


D. J. Gilmour\*, D. J. Blackwood\*, J.M. O'Keeffe\*, and R. F. Falconer\*\*

\* Division of Natural and Built Environment, Abertay University, Scotland. \*\* School of Arts, Media and Computer Games, Abertay University, Scotland.

#### Outline

- Introduction
- Purpose of the Research
- Decision support process and actors
- Findings
- Recommendations







#### Challenges

- Rural communities in Scotland
  - Development and growth dependent on access to clean reliable drinking water source
    - Small Commercial activities (tourism, food and drink, whisky!)
    - Housing
- Landscape multiple diffuse pressures on drinking water sources
  - Agriculture
  - Peatlands
  - Septic tanks



### Drinking water quality in Scotland

Private water supplies:

Type A: (50+, commercial) – Monitored and failures reported

Type B: Domestic premises only – Monitoring not required

| Parameter          | Public supp<br>(% complia | - | Type A – Private<br>(% compliance) | Type B - Private<br>(% compliance) |  |  |  |
|--------------------|---------------------------|---|------------------------------------|------------------------------------|--|--|--|
| Overall compliance | 99.89                     |   | 93.97                              | 87.86                              |  |  |  |
| Coliform bacteria  | 99.55                     |   | 75.77                              | 56.88                              |  |  |  |
| E. coli            | 99.99                     |   | beat, organic<br>Chlorine =        | 7×                                 |  |  |  |
| Colour             | 100.00                    |   | ion by-products                    | 83.18                              |  |  |  |
| рН                 | 99.98                     |   | 83.21                              | 73.21                              |  |  |  |
| Iron               | 99.63                     |   | 86.56                              | 85.94                              |  |  |  |
| Manganese          | 99.70                     |   | 92.70                              | 87.73                              |  |  |  |

Table 1 Compliance with drinking water quality parameters in Scotland 2014



Are the benefits of improvement of rural small water supplies worth the costs?

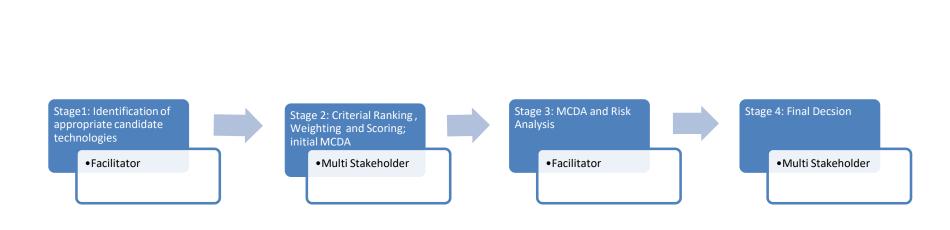
Who is the decision maker?

What do they base their decision on?



#### Our work

- Technology scan what technologies are potentially suitable to provide treatment
- Consultation with experts, generation of a Technology Inventory suited to Scottish rural water treatment issues
- Identification of Criteria
- Short-list of technologies for a specific site
- Decision making workshop with key stakeholders




#### Deliverables

- The principle deliverables:
- An Inventory of small to medium sized water treatment technologies that are appropriate for Rural Communities (the Technology Inventory)
- A set of SRC drinking water technology selection criteria
- A decision support process and tool that utilises data from the Technology Inventory to enable stakeholders to rank potential technologies and hence to recommend the most appropriate for Sustainable Rural Communities



## Stages in the decision support process and actors





| Sustainability theme | Criteria             | Description                                               | Units                       |
|----------------------|----------------------|-----------------------------------------------------------|-----------------------------|
|                      | Capital Cost         | Capital cost of equipment and install                     | £                           |
| Economic             | Maintenance Cost     | Maintenance costs per year                                | £/year                      |
|                      | Operational Cost     | Operational cost (e.g. consumables, energy)               | £/year                      |
|                      | Affordability        | Ability of householders to pay for services delivered     | % of household              |
| Social               |                      |                                                           | budget                      |
| JUCIAI               | Willingness to pay   | Willingness to pay for attributes covering                | £/unit of reduced           |
|                      |                      | environmental, safety and health factors                  | risk                        |
|                      | Complexity (user     | Basic, intermediate or advanced skill or low medium       | basic/int/adv or            |
|                      | input required)      | or high frequency of input                                | low/med/high                |
| Technological/       | Adaptability         | Level of accommodation in design: potential and           | 1-5                         |
|                      |                      | ability to accommodate future changes (qualitative)       |                             |
| performance          | Reliability, ability | Ability to meet drinking water quality standards          | 0, +, ++, +++               |
|                      | to achieve           | (parameter specific - no treatment, good, very            |                             |
|                      | compliance           | good, excellent/complete treatment)                       |                             |
|                      | Durability           | Design life, years expected to operate successfully       | years                       |
|                      | Water resource       | Consumption of raw water resources                        | % recovery                  |
|                      | use                  |                                                           |                             |
|                      | Energy use           | Energy required in process                                | kWh/m³                      |
|                      | Chemical use         | Chemical use (qualitative or quantitative)                | yes/no or kg/m <sup>3</sup> |
|                      | Chemical transport   | Impact on air quality (sulphur dioxide, nitrous oxide     | yes/no or                   |
| Environmental        | requirement          | emissions) and climate change (CO <sub>2</sub> emissions) | miles/m <sup>3</sup>        |
|                      | Impact on water      | Discharge of waste water from process                     | low/med/high                |
|                      | environment          |                                                           |                             |
|                      | Solid waste          | Sludge, chemical waste streams                            | low/med/high or             |
|                      | produced             |                                                           | tonnes/year                 |
|                      | Physical footprint   | Size of treatment plant                                   | m²                          |
|                      | Visual impact        | Localvicual impact                                        | low/mod/high                |

#### Example of a populated technology inventory with data

Activity 3A: Individual decision on technology ranking Rank the technology against each criteria. 1 = Worst to 9 = Best

|                            |                                                | Economic                    |                             |                                                 | Social                                                            |                                                                                               |                                                                                                                                                                | Performance                                                                                                                  |                                                                                                                                                                      | Environmental                              |                                     |                                                             |                                   |                                |       |                                            |                                |  |
|----------------------------|------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------------------------------|-----------------------------------|--------------------------------|-------|--------------------------------------------|--------------------------------|--|
| Technology                 | Capital cost (£)                               | Maintenance<br>Cost (£/yr.) | Operational<br>Cost (£/yr.) | Affordability cost<br>per year per<br>household | Willingness to<br>pay                                             | User input required<br>(complexity)                                                           | Adaptability                                                                                                                                                   | Reliability (ability to achieve<br>compliance)<br>(, -, +, ++, +++)                                                          | Durability                                                                                                                                                           | Resource utilisation<br>(Water % recovery) | Energy use<br>(kWh/m <sup>3</sup> ) | Chemical use<br>(kg/m <sup>3</sup> )                        | Chemical transport<br>requirement | Impact on water<br>environment | Waste | Physical<br>footprint<br>(m <sup>2</sup> ) | Visual impac<br>(Low, med, hig |  |
| Ceramic<br>nembrane filter | £11000-£21000<br>(About 16% higher<br>than MF) | £ 150.00                    | £ 300.00                    | £4.50                                           | Very willing<br>Willing<br>Neutral<br>Unwilling<br>Very unwilling | Safe handling of<br>membranes, periodic<br>monitoring and<br>inspection                       | Can accommodate higher<br>flux than polymer<br>membrane, therefore can<br>achieve more per m <sup>2</sup> surface<br>area, however they are<br>more expensive. | Fe/Mn +/+<br>Heavy metals -<br>Organics -<br>Bacteria +++<br>Viruses -<br>Protozoa +++<br>Taste/Odour -/-<br>Turbidity +++   | Able to accommodate higher<br>flux, membrane life time up<br>to 20 years                                                                                             | 97-99.9%                                   | 0.1-0.2<br>kWh/m <sup>3</sup>       | Low (may be used<br>in cleaning e.g.<br>citric acid, NaOCI) | minimal, cleaning<br>chemicals    | about 1%<br>wastewater         | Low   | Small                                      | Low                            |  |
| Microfiltration            | £5000-£18500                                   | £ 150.00                    | £ 400.00                    | £6.50                                           | Very willing<br>Willing<br>Neutral<br>Unwilling<br>Very unwilling | Periodic monitoring<br>and inspection,<br>replacement of filter<br>(cartridges or<br>modules) | Suitable for small<br>community: can be modular;<br>Scalable by addition of<br>modules                                                                         | Fe/Mn +/+<br>Heavy metals<br>Organics<br>Bacteria +++<br>Viruses-<br>Protozoa +++<br>Taste/Odour -/-<br>Turbidity +++        | Membrane life 7 to 8 years<br>or less depending on source<br>water. Membrane integrity<br>testing required periodically<br>to check for wear or damage.              | 92 to 95% average                          | 0.22-0.9<br>kWh/m <sup>3</sup>      | Low (some may be<br>used in cleaning)                       | minimal, cleaning<br>chemicals    | about 5-8%<br>wastewater       | Low   | Small to med<br>(larger than<br>ceramic)   | Low                            |  |
| Sand filtration            | £27000-£31000                                  | £ 100-2545                  | £438                        | £ 5-30                                          | Very willing<br>Willing<br>Neutral<br>Unwilling<br>Very unwilling | Skimming top layer<br>of sand, once per<br>year, and washing<br>for reuse                     | Once installed may not be<br>easy to expand capacity,<br>May require to add<br>additional system (or have<br>sufficient redundancy built<br>into design)       | Fe/Mn++/++<br>Heavy metals -<br>Organics -<br>Bacteria ++<br>Viruses ++<br>Protozoa ++<br>Taste/Odour ++/++<br>Turbidity +++ | Very durable, low tech<br>system. Periodic skimming<br>and renewal of sand may<br>necessitate two filters.<br>Requires start up period for<br>biofilm layer to form. | >99.5                                      | minimal                             | nil (non chemical<br>method)                                | None                              | minimal                        | Low   | Med-large<br>(9m <sup>2</sup> )            | Med                            |  |

Note:Esti mates based on Average Scottish consumption (150 litres per person per day) and small community system (up to 100 homes, 200 pe)= 200 x 150 x 365 = 10,950,000 litres or 10950 m<sup>-3</sup> per year. Data provided are not absolute, and provided for comparison purposes only.



#### Stakeholder MSDA workshop

- Technology expert, local residents, enterprise agency, water company representative
- Stakeholders determined the weighting of each category and each criteria
- Stakeholders discussed and ranked each technology against criteria (0-100)



#### Normalised Criteria weights

| Gro                  | oup A   |            | Group B                 |         |            |  |  |  |  |
|----------------------|---------|------------|-------------------------|---------|------------|--|--|--|--|
| Criteria             | Weights | Normalised | Criteria                | Weights | Normalised |  |  |  |  |
| Capital Cost         | 12.5    | 0.125      | Capital Cost            | 10      | 0.1        |  |  |  |  |
| Maintenance Cost     | 7.5     | 0.075      | Maintenance Cost        | 6.25    | 0.0625     |  |  |  |  |
| Operational Cost     | 5       | 0.05       | <b>Operational Cost</b> | 8.75    | 0.0875     |  |  |  |  |
| Affordability        | 12.5    | 0.125      | Affordability           | 8.75    | 0.0875     |  |  |  |  |
| Wiliness to pay      | 7.5     | 0.075      | Wiliness to pay         | 10      | 0.1        |  |  |  |  |
| User input required  | 5       | 0.05       | User input required     | 6.25    | 0.0625     |  |  |  |  |
| Adaptability         | 4.5     | 0.045      | Adaptability            | 7       | 0.07       |  |  |  |  |
| Reliability          | 16.5    | 0.165      | Reliability             | 15.75   | 0.1575     |  |  |  |  |
| Durability           | 9       | 0.09       | Durability              | 12.25   | 0.1225     |  |  |  |  |
| Resource utilisation | 4       | 0.04       | Water resources         | 1.5     | 0.015      |  |  |  |  |
| Energy requirement   | 2       | 0.02       | Energy requirement      | 0.75    | 0.0075     |  |  |  |  |
| Chemical use         | 3       | 0.03       | Chemical use            | 3       | 0.03       |  |  |  |  |
| Chemical transport   | 1.4     | 0.014      | Chemical transport      | 3       | 0.03       |  |  |  |  |
| Impact of water      | 4       | 0.04       | Impact of water         | 0.75    | 0.0075     |  |  |  |  |
| Waste                | 2       | 0.02       | Waste                   | 1.5     | 0.015      |  |  |  |  |
| Physical footprint   | 1.6     | 0.016      | Physical footprint      | 2.25    | 0.0225     |  |  |  |  |
| Visual impact        | 2       | 0.02       | Visual impact           | 2.25    | 0.0225     |  |  |  |  |
|                      | 100     | 1          |                         | 100     | 1          |  |  |  |  |



#### Outcomes

- Decision was the same for two separate groups
- Stakeholders found exercise surprising technology experts had not considered local needs/priorities; Community members did not have much prior knowledge of the technology
- Investment cost was important, but other features much more important locally.



Range of consensus scores for Economic, Social and Technical Performance Criteria

|                                      |              |                     |                     |               | Criteria              |                        |              |             |            |  |
|--------------------------------------|--------------|---------------------|---------------------|---------------|-----------------------|------------------------|--------------|-------------|------------|--|
| Technology                           |              | Economic            |                     |               | Social                |                        | Performance  |             |            |  |
|                                      | Capital Cost | Maintenance<br>Cost | Operational<br>Cost | Affordability | Willingness to<br>Pay | User Input<br>Required | Adaptability | Reliability | Durability |  |
|                                      | 7            | 1                   | 1                   | 1             | 3                     | 4                      | 3            | 5           | 9          |  |
|                                      | 9            | 1                   | 6                   | 5             | 9                     | 5                      | 6            | 6           | 8          |  |
| Ceramic membrane filter              | 7            | 9                   | 9                   | 9             | 3                     | 4                      | 7            | 9           | 9          |  |
|                                      | 2            | 7                   | 8                   | 7             | 7                     | 6                      | 8            | 8           | 7          |  |
|                                      | 7            | 9                   | 9                   | 9             | 7                     | 1                      | 6            | 9           | 9          |  |
| Ceramic membrane filter<br>Consensus | 7            | 9                   | 9                   | 9             | 9                     | 1                      | 6            | 9           | 9          |  |
|                                      | 9            | 2                   | 3                   | 3             | 3                     | 9                      | 9            | 1           | 4          |  |
|                                      | 9            | 1                   | 7                   | 4             | 9                     | 5                      | 8            | 4           | 6          |  |
| Microfiltration                      | 8            | 9                   | 4                   | 4             | 3                     | 1                      | 9            | 7           | 5          |  |
|                                      | 8            | 7                   | 3                   | 5             | 7                     | 6                      | 9            | 7           | 5          |  |
|                                      | 9            | 9                   | 2                   | 1             | 5                     | 4                      | 9            | 5           | 1          |  |
| Microfiltration<br>Consensus         | 9            | 9                   | 2                   | 1             | 7                     | 4                      | 9            | 5           | 1          |  |
|                                      | 1            | 9                   | 9                   | 9             | 1                     | 1                      | 1            | 9           | 1          |  |
|                                      | 1            | 9                   | 8                   | 2             | 9                     | 8                      | 2            | 5           | 7          |  |
| Sand filtration                      | 1            | 1                   | 1                   | 1             | 1                     | 9                      | 1            | 4           | 5          |  |
|                                      | 2            | 1                   | 2                   | 3             | 3                     | 8                      | 7            | 9           | 9          |  |
|                                      | 1            | 1                   | 1                   | 4             | 3                     | 9                      | 1            | 1           | 8          |  |
| Sand filtration<br>Consensus         | 1            | 1                   | 1                   | 4             | 1                     | 9                      | 1            | 1           | 8          |  |



#### **Scoring of Alternatives**

|              |         | Economic |       |        | Social  |      | Techni | cal/Perfo | mance  |          |        |      | Environm     | nental     |       |          |        |         |
|--------------|---------|----------|-------|--------|---------|------|--------|-----------|--------|----------|--------|------|--------------|------------|-------|----------|--------|---------|
|              | 0.13    | 0.08     | 0.05  | 0.13   | 0.08    | 0.05 | 0.05   | 0.17      | 0.09   | 0.04     | 0.02   | 0.03 | 0.01         | 0.04       | 0.02  | 0.02     | 0.02   | Weight  |
|              | capital | maint.   | oper. | afford | willing | U/I  | adapt. | reliab.   | durab. | resource | energy | chem | chem<br>tran | impac<br>t | waste | physical | visual | Av.     |
| tech stage 1 | C1      | C2       | C3    | C4     | C5      | C6   | С7     | C8        | С9     | C10      | C11    | C12  | C13          | C14        | C15   | C16      | C17    |         |
| Ceramic      | 5       | 9        | 9     | 9      | 9       | 8    | 2      | 4         | 7      | 6        | 1      | 1    | 1            | 6          | 9     | 9        | 9      |         |
| Micro        | 9       | 9        | 5     | 5      | 6       | 9    | 9      | 1         | 1      | 1        | 3      | 1    | 1            | 1          | 9     | 5        | 9      |         |
| Sand         | 1       | 1        | 1     | 1      | 1       | 1    | 1      | 9         | 9      | 9        | 9      | 9    | 9            | 9          | 9     | 1        | 1      |         |
| Ceramic      | 0.63    | 0.68     | 0.45  | 1.13   | 0.68    | 0.40 | 0.09   | 0.66      | 0.63   | 0.24     | 0.02   | 0.03 | 0.01         | 0.24       | 0.18  | 0.14     | 0.18   | 6.38(1) |
| Micro        | 1.13    | 0.68     | 0.25  | 0.63   | 0.45    | 0.45 | 0.41   | 0.17      | 0.09   | 0.04     | 0.06   | 0.03 | 0.01         | 0.04       | 0.18  | 0.08     | 0.18   | 4.86(2) |
| Sand         | 0.13    | 0.08     | 0.05  | 0.13   | 0.08    | 0.05 | 0.05   | 1.49      | 0.81   | 0.36     | 0.18   | 0.27 | 0.13         | 0.36       | 0.18  | 0.02     | 0.02   | 4.35(3) |
| tech stage 2 |         |          |       |        |         |      |        |           |        |          |        |      |              |            |       |          |        |         |
| chemical     | 1       | 1        | 1     | 1      | 1       | 1    | 9      | 1         | 1      | 9        | 9      | 1    | 1            | 1          | 9     | 1        | 1      |         |
| UV           | 8       | 9        | 6     | 9      | 7       | 7    | 1      | 8         | 9      | 9        | 1      | 9    | 9            | 9          | 1     | 9        | 9      |         |
| UVC-LED      | 9       | 9        | 9     | 8      | 9       | 9    | 1      | 9         | 7      | 9        | 5      | 9    | 9            | 9          | 5     | 9        | 9      |         |
| chemical     | 0.13    | 0.08     | 0.05  | 0.13   | 0.08    | 0.05 | 0.41   | 0.17      | 0.09   | 0.36     | 0.18   | 0.03 | 0.01         | 0.04       | 0.18  | 0.02     | 0.02   | 2.00(3) |
| UV           | 1.00    | 0.68     | 0.30  | 1.13   | 0.53    | 0.35 | 0.05   | 1.32      | 0.81   | 0.36     | 0.02   | 0.27 | 0.13         | 0.36       | 0.02  | 0.14     | 0.18   | 7.63(2) |
| UVC-LED      | 1.13    | 0.68     | 0.45  | 1.00   | 0.68    | 0.45 | 0.05   | 1.49      | 0.63   | 0.36     | 0.10   | 0.27 | 0.13         | 0.36       | 0.10  | 0.14     | 0.18   | 8.18(1) |
| tech stage 3 |         |          |       |        |         |      |        |           |        |          |        |      |              |            |       |          |        |         |
| pH - lime    | 1       | 9        | 1     | 1      | 1       | 1    | 9      | 9         | 9      | 9        | 9      | 1    | 1            | 1          | 9     | 9        | 9      |         |
| pH - chem    | 9       | 1        | 9     | 9      | 9       | 9    | 1      | 1         | 1      | 9        | 1      | 9    | 9            | 9          | 9     | 9        | 9      |         |
| pH - lime    | 0.13    | 0.68     | 0.05  | 0.13   | 0.08    | 0.05 | 0.41   | 1.49      | 0.81   | 0.36     | 0.18   | 0.03 | 0.01         | 0.04       | 0.18  | 0.14     | 0.18   | 4.93(2) |
| pH - chem    | 1.13    | 0.08     | 0.45  | 1.13   | 0.68    | 0.45 | 0.05   | 0.17      | 0.09   | 0.36     | 0.02   | 0.27 | 0.13         | 0.36       | 0.18  | 0.14     | 0.18   | 5.84(1) |



#### Workshop findings

- The process of reaching consensus amongst delegates at the decision making workshop identified the range of priorities and values different stakeholders place on different criteria with relation to drinking water criteria.
- All delegates found that discussion of the technologies assisted in enhancing knowledge about technologies application, but also in recognising issues that they may previously have discounted as unimportant



#### Conclusions

- Technology landscape is complex, multiple options for treatment
- MCDA is useful tool for water treatment decision making on best treatment for a specific location
- No one-size fits all system must take into account local treatment needs, technology suitability and local concerns



# Arres 100 Thank you for listening!

