

WEF NEXUS: MODELS & DST's Daniel Gilmour, Ruth Falconer,, Abertay University Liz Varga, Cranfield University

Talk outline

- Landscape of nexus models and tools
- Discipline perspectives
- Challenges in NEXUS modelling & some examples
- Challenges in NEXUS DST's & some examples
- Summary

Stakeholder engagement, analysis at multiple scales & trans-disciplinary

Learning from live case studies

Governance & Power

Cranfield UNIVERSITY School of Management

HR Wallingford Working with water Hydrological and land-use modelling

Complex infrastructure systems

Cutting GHG

Future climate impacts

WEF data & statistics

Science & Technology Facilities Council

Objectives are to...

- Explore food, water and energy provision systems at a range of scales, to identify low impact, secure and equitable systems
- Highlight techno-sociological interconnections & tensions between systems
- Develop a framework for accelerating change, applicable at a range of scales (household, community, city, regional, national) [STEPPING UP]
- Ensure the framework is embedded within a dynamic global context

Architecture of the research

Nexus Models

- At a practical level, a suite of techniques and guidance documents exist to understand and manage WEF
 - Categorised as: Sustainability Assessment (SA), Modelling & Optimisation, and Visualisation of Nexus
- Nexus models predominantly focus on:
 - -Biophysical modelling of resource flows
 - -Sustainability assessment models
 - Social simulation --- including policy driven and human disaggregated decision making

Nexus DST

- Nexus DST have many aims:
 - Collect and integrate knowledge
 - Identify and understand trade-offs
 - Characterise, monitor and enhance nexus performance
- The boundary between NEXUS models and DST's is becoming blurred

Models Types & Properties

- Systems Approach Individual, Agent based models, treat the WEF as a complex system -- Complexity Science
 - Serious/applied game approaches Game Design
- Partial Equibrium Models, Flow & Fund Models -- Economic
- Biophysical models PDE's, DE's Physical Sciences
- Sustainability Indicator models --Engineering

DST Types

- Multiple Criteria decision analysis
- MCDA
 - ANP
 - TOPSIS
 - SMART
 - MOO
- To aggregate or not?
- How to convey to Decision Makers?

Nexus Modelling Challenges

- Complexity
 - Emergence, Self organisation, Adaptation, Feedbacks, nonlinearity
- Data availability and accessibility is a key challenge for a nexus models & assessment
- Communicate model findings
- Which model?

STEPPING Global Food System

Gladek, E,... 2016

Australian Outlook

Figure 53. Overview of dynamic model linkages

Bryan, B., 2015.

Notes: Figure 53 summarises the major data linkages between the models implemented for the National Outlook project.

A. SOLAR IRRIGATION IN REGION a

B. HYBRID DIESEL-SOLAR IRRIGATION IN REGION a C. MINI-HYDRO IN REGION a

Flammini, A., 2014.

- Sustainable resource management strategies based on quantification of resources
 - (water, energy, land, economic, societal) requirements:

Mohtar & Lawford 2016;

DM- Providing 'just' the right amount of info.

Concept of Satisficing Herbert Simon, 1956

NEXUS Sustainability Indicators

* ~

Table A.3 (part 3 of 3)

Summary table of data and indicators for specific nexus issues linking sustainable energy and food security objectives (indicators in italic are possible indicators currently not collected)

	ACCESS TO MODERN ENERGY SERVICES	EFFICIENT USE OF ENERGY	THE ENERGY PRODUCED AND CONSUMED IS CLEAN/ RENEWABLE	Indicators or indicator components relevant to all sustainable energy components
FOOD STABILITY	Energy subsidies and high/ stable yields Variation of production of the 4 main crops/modern energy used in agriculture Underground water pumping Percentage of agricultural land classified as having moderate to severe water erosion or wind risk []] Amount of water pumped for agriculture / cost of electricity, diesel, gosoline used in water pumping	New technologies and practices in agriculture Agriculture, value added (% of GDP) [c] Economic value of food products / Reduction of use of non-renewable energy Food transport Energy associated with transport of a national food basket	 Delinking the food and energy markets Percentage of renewable energy used in agrifood systems Change in consumption of fossil fuels and traditional use of biomass [e], includes: Substitution of fossil fuels with domestic bioenergy measured by energy content and in annual savings of convertible currency from reduced purchases of fossil fuels [e] Substitution of traditional use of biomass with modern domestic bioenergy measured by energy content [e] 	Domestic food price volatility [m] Per capita food production variability [m] Per capita food supply variability [m]
licator components curity components	Share of households (or population) without electricity or commercial energy, or heavily dependent on non-commercial energy [d] Energy use (kg oil equivalent)		Fossil fuel energy consumption (% of total) [c] Primary production of renewable energy (total and disaggregated by hydro, wind, solar, biomass and n waste, geothermal) [o]	i enewable

• Flammini (2014)

Aggregation methods: Simple (transparent). SMART, TOPSIS Blackbox methods. ELECTRE. PROMETHEE, ANP

Simplify yet preserve meaning?

UP STEPPING Visualising Urban Sustainability Indicators

Energy efficiency, Noise pollution, Economic, Acceptability, Housing Provision

Decision Support Framework & Criteria

appropriate candidate technologies		Stage 2: Crite Weighting a initial MCDA	ria Ranking , nd Scoring;	Analysis		Stage 4: Final Decision
• Facilitator		• Multi	Stakeholder	• Facilitator		• Multi Stakeholder
	Category	Primary Criteria	Criteria	Description	Units	
	Economic	Life Cycle Cost	Capital Cost	Capital Cost	£	
			Maintenance Cost	Maintenance Cost	£/year	
			Operational Cost	Operational Cost	£/year	
	Social	Affordability	Affordability to householders	Ability of householders to pay for services delivered	% of household budget	
		Willingness to pay	Williness to pay	Willingness to pay for attributes covering environmental , safety and health factors	£/unit of reduced risk	
		Complexity of operation	User input required	User input required to operate the system based on frequency of input needed and competency required	Qualitative	
	Performance	Flexibility and adaptability	Adaptability	Level of accommodation in design: potential and ability to accommodate future changes (qualitative)	Qualitative	
		Reliability	Reliability of the system	Risk of failure to meet consent conditions due to treatment process malfunction (qualitative).	Qualitative	
		Durability	Durability of the system	Design life- Number of years system expected to operate successfully	years	

STEPPING

Label 1: n criteria	criteria label/tech stage 1	C1	C2	C3	C4	C5	C6
Enter weights							
	weights	0.10	0.60	0.09	0.09	0.10	0.06
Enter preference data [1=low, 9=high]	Alternative 1	5	9	9	9	9	8
	Alternative 2	9	9	5	5	6	9
	Alternative 3	1	1	1	1	1	1
Smart calculation performed							
per alternative		0.5	5.4	0.81	0.81	0.9	0.48
		0.9	5.4	0.45	0.45	0.6	0.54
		0.1	0.6	0.09	0.09	0.1	0.06
		SMART					
		SCORE	RANK				
		11.31	1				
		9.83	2				
		4.75	3				

Closest alternative to ideal solution (highest value is best)		TOPSIS SCORE	Rank
	Alt 1	0.015	2.00
	Alt 2	0.955	1.00
	Alt 3	0.000	3.00

STEPPING MCDA – Pareto Fronts MOO

- An exploratory approach of the entire problem space can be tremendously valuable to DM by laying bare unforeseen issues and rebound effects.
- When solving real-world nexus problems, it is difficult to constrain the number of decision variables/objectives leading to both larger problem space and increased cost per evaluation.

Summary

- No silver bullet method depends on the aim: understand, govern or enhance the nexus
- Mixture of methods will be required reflecting the interdisciplinary nature of WEF problem.
- Stakeholder engagement will be key in model/tool development as no one discipline can build a NEXUS model
- Visualisation will be a key tool in conveying and understanding the complexity