WORLD WATER CONGRESS XVI Cancun 29 May – 2 June 2017

Translating Science into Policy: Setting nutrient limits for agricultural land use

Dr Bryan Jenkins

TRANSLATING SCIENCE INTO POLICY

- Cumulative impacts of diffuse pollution
- Nutrients from agricultural land use intensification
- Sustainability limits reached or surpassed
- Use of New Zealand case studies to identify policy issues
- More effective policies from other jurisdictions identified

SCIENCE OF LAND USE INTENSIFICTATION

- Algal and macrophyte growth and nitrate toxicity in rivers
- Eutrophication and algal blooms in lakes
- Contamination of groundwater used for drinking

MAIN POLICY INSTRUMENT IN NEW ZEALAND

- Resource Management Act: effects-based legislation
 - enabling resource use while managing effects of activities within environmental limits
- Requires mitigation not elimination of adverse effects
 - cumulative outcome is for increasing degradation of the environment

POLICY FAILURES	ALTERNATIVE POLICIES
Impact assessment at quality limits - Central Plains irrigation scheme	Demonstration of sustainability - Arizona 'Active Management Areas' - Sydney 'neutral or beneficial effect'
Cap-and-Trade markets to reduce load - Lake Taupo nitrogen discharge allowances	Mitigation cost recovery strategies - Murray Darling Basin salinity management
Allocation of scarce capacity - Grandfathering for Hurunui catchment - Modelling changes for Wainono Lagoon	Reallocation incorporating equity - South African water legislation

CENTRAL PLAINS IRRIGATION

- Irrigation scheme proposed in catchment where nitrate standards already exceeded
- Project consented because of economic benefits and effects considered "minor"
- High standard of nitrate management required to mitigate adverse effects

CUMULATIVE EFFECTS ANALYSIS

- Current load to lake from existing land use
 - 2,650 tN/y
- Equilibrium load (allowing for groundwater time lag)
 4,100 tN/y
- Addition of Central Plains (and other consented areas)
 - 5,600 tN/y

DEMONSTRATION OF SUSTAINABILITY RATHER THAN EFFECTS MITIGATION

- Arizona Groundwater "Active Management Areas"
 - demonstrate water of sufficient quantity and quality available for 100 years
 - demonstrate consistency with AMA management plan
- Neutral or Beneficial Effect: Sydney Water Authority
 - if water quality does not meet acceptability criteria
 - then consent refused unless development has neutral or beneficial effect

LAKE TAUPO NITROGEN CAP AND TRADE

- NZ's largest lake: sensitive to nitrogen
- Groundwater source from
 land use intensification
- Load increase from 650 to 1350 tN/y
- Goal to return of 2001 levels

- Cap and trade approach with nitrogen discharge allowances
- Trust established with \$81.5m of taxpayer funds to stand in the market if needed

OUTCOME OF CAP AND TRADE

- 20% reduction in NDAs achieved
- 90% of reduction by taxpayer funds
- However cap set too low: underestimate of load still to come
- Policy failure
 - water quality target will not be achieved
 - taxpayer not polluter paying the cost

MITIGATION COST RECOVERY Murray-Darling Basin Salinity

- New actions putting in salt and delayed actions increasing salt offset by actions to reduce salt
- Two salinity registers
 new actions / delayed act

- Cost of achieving credits recovered from those creating debits
- Reduction in salinity from 1050 EC units (1988) to 710 EC units (2015)

EQUITY IN ALLOCATION OF NUTRIENT CAPACITY Hurunui Catchment

- Nutrients at sustainability limits
 - Constraint on nutrient release
 - Limit of 10% increase in current load (grandfathering)
- Equity concerns

- sheep/beef with low loss rates highly constrained
- dairy farmers with high loss rates given greater capacity
- new entrants only if existing users reduce

EQUITY IN ALLOCATION OF NUTRIENT CAPACITY Wainono Lagoon

- Goal to reduce trophic level index from 6.5 (hypertrophic)
- Farmers accepted need for nitrogen reduction but rejected "grandfathering" for allocation
- Negotiated agreement to create headroom for new entrants and flexibility for low emitters by capping high emitters
- Updates to model to estimate nitrogen loss rates varied allocation calculations and reignited debate

REALLOCATION UNDER SCARCITY – South African Water Act

- Water quality or quantity at sustainability limits
 - reallocation on the basis of merit not existing use rights
 - inefficient use and high rate of discharge constrain resource productivity and increase environmental impacts
- Reallocation for (a) equitable allocation, (b) beneficial use,
 (c) efficient management, (d) protect water quality
 - factors considered: lawful uses, investments made, past discrimination, socio-economic effects, catchment strategies, effects on resource/users, water quality, strategic importance, future resources, international obligations

CONCLUSIONS: SCIENCE AT SUSTAINABILITY LIMITS

- Policy for Development Assessment processes
 - compliance with regional sustainability strategy *rather than* assessment to ensure effects are minor
- Policy for economic instruments
 - mitigation cost recovery charges for polluter pays *rather than* cap-and-trade in discharge allowances
- Policy for equity in allocation
 - merit-based reallocation among existing and future users *rather than* first-come/first-served and existing use rights