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Abstract 

It has been reported that persistent cyanide pollution occurs in Artisanal small-scale gold mining 

(ASGM)-affected catchment areas in Burkina Faso. In the present study, the logistic regression 

method was employed to identify the factors that influence the spatial distribution of cyanide 

pollution as well as to predict the cyanide pollution map risk at catchment level. Soil samples 

were collected from two ASGM sites in the northern Zougnazagmiline(“North”) site and 

southern Galgouli(“South”) site parts of Burkina Faso, covering areas of 22 km² and 20 km², 

respectively. Free cyanide (FCN) concentration in each sample was measured. It was shown that 
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the spatial distribution of cyanide was solely controlled by the soil type in Zougnazagmiline and 

both the soil type and conductivity in Galgouli. On the other hand, the cyanidation zones within 

the two catchments were the places where the highest risk of cyanide pollution occurs, with 

probabilities of 0.8 and 1 in Zougnazagmiline and Galgouli, respectively. More than 20% of the 

settled area in the Zougnazagmiline and 5% of that in Galgouli were exposed to cyanide 

pollution. Logistic regression was able to reliably predict cyanide contamination in areas affected 

by ASGM. The model could be useful for decision-makers to plan ASGM-site decontamination. 

Key Words: Hazardous chemicals, Catchment area, diffuse pollution, Soil contamination, Risk 

assessment, Burkina Faso 

  



 

 

1 Introduction 

Artisanal and small-scale gold mining (ASGM) has been widespread throughout the world for 

over 2000 years (Hilson, 2002a; Weng et al., 2014), and more developed since the mid-1980s in 

West Africa, including Burkina Faso(Butaré & Keita, 2009; Grätz, 2009). In 2004, between 10% 

and15% of the gold mined in the world has been provided from ASGM (Adler et al., 2013; 

Grimaldi et al., 2015; Street et al., 2013; Telmer & Veiga, 2008). In Burkina Faso, small-scale 

artisanal miners produced approximately 12 tons of gold compared to an output of 14 tons from 

large-scale mines between 1986 and 1997(Gajigo et al., 2012; Guèye, 2001).  

The ASGM sector provides a livelihood for millions of people throughout the world (Siegel & 

Veiga, 2009; Weng et al., 2014). In the case of sub-Saharan Africa, at least two million people 

are directly employed in ASGM, and an additional 10 million more people depend on the sector 

for their survival (Adler et al., 2013; Chupezi & et al., 2009; Hilson, 2009; Janneh & Ping, 2011; 

Schure et al., 2011; Weng et al., 2014). Nevertheless, several negative impacts are associated 

with ASGM such as an increase of infectious diseases, violence and crime, child labour and a 

lacking emphasis on education, loss of biodiversity and exposure of miners to strong hazardous 

chemicals (Adler et al., 2013). In the natural environment, ASGM induces changes to land use 

and landscapes, instability of the ground and landslide sand water, air and soil pollution (Adler et 

al., 2013; Guimaraes et al., 2011).Environmental pollution is primarily caused by the use of toxic 

chemicals products, including cyanide, which is widely used in post-processing to extract 

residual gold after mercury processing. The residual material is rich in cyanide ions, which can 

ultimately leach into the environment without treatment or control.(Adler et al., 2013; Bernstein, 

2000; Sampat, 2003; Veiga et al.,2014; Velásquez-lópez et al., 2011).  

Previous studies have shown that the main environmental parameters that control the distribution 



 

 

of pollutants are land cover, topography, geology, rainfall, temperature, soil type, and distance 

from the pollution source (Kheir et al.,2014;Venkataraman and Uddameri,2012). In addition, 

several chemical parameters, such as pH, soil conductivity and organic matter content, can also 

help explain the spatial distributions of pollutants (Kheir et al., 2014).  

Cyanide is present in the environment as FCN, weak acid dissociable (WAD) and strong acid 

dissociable (SAD). The most toxic form is FCN. The subsurface behaviour of cyanide 

compounds in soil is governed by chemical and biological processes (Kjeldsen, 1999). The 

relevant chemical processes are adsorption, sorption, volatilization, complexation, sulfidation 

and dissolution-precipitation type reactions, which are sensitive to pH, temperature and redox 

conditions (Donato et al., 2007; Guo et al., 2014; Johnson, 2014; Klenk etal., 1996; Richards et 

al., 2000). On the other hand, microbial activity and plant  uptake can affect the behaviour of 

cyanide in the environment (Kumar et al., 2016). 

We have investigated the use, fate and behaviour of cyanide in two catchments areas affected by 

ASGM in Burkina Faso. It was found that up to 20 kg/week of cyanide could be illegally used in 

one catchment area for gold processing. Cyanide-containing leachate is then directly released 

into the environment without any treatment or control. FCN accumulates around the cyanide-

processing zones, whereas some is also progressively transported to the catchment outlet through 

surface runoff and infiltration, which pollutes surface water, groundwater and soil within the 

catchment (Razanamahandry et al., 2016). However, the processes that control the transport of 

FCN are not sufficiently understood to allow the identification and targeting of pollution risk 

zones for the implementation of a remediation plan. In this regard, the Geographic Information 

Systems (GIS) could be useful in assessing cyanide pollution risk.  

Related examples include modelling the adaptation of a mine-impacted community to landmine 



 

 

contamination (Benini et al. 2002; Schultz et al. 2016) and  risk mapping of landmine hazard and 

its spatial distribution (Alegria et al. 2011; Chamberlayne, 2002; Lacroix et al. 2013; Schultz et 

al., 2016). In addition, logistic regression (LR) is one of the most important statistical techniques 

developed for analysing and classifying categorical variables (Agresti, 2002; Hair et al.,1998; 

Mokhtari, 2014; Pohar et al., 2004) A GIS LR approach has been applied to landslide 

susceptibility mapping (Guns & Vanacker, 2012; Schultz et al., 2016; Van Den Eeckhaut et al., 

2006; Wang et al.,2015), disease mapping (Craig et al., 2007; Ekpo et al.,2008; Goovaerts et al., 

2015; Schultz et al., 2016), vulnerability mapping (Ettinger et al., 2015; Schultz et al., 2016), 

wildfire distribution (Rodrigues et al., 2014; Schultz et al., 2016), crime mapping (Capla et al., 

2011; Caplan, 2011; Schultz et al., 2016), post-fire soil erosion (Notario et al., 2014) and 

pollutants mapping (Venkataraman and Uddameri, 2012).The environmental and chemical 

parameters that influence the subsurface spatial distribution of FCN appear to have not yet been 

investigated using LR. 

The aim of the present study is to(i) create a cyanide pollution risk map for ASGM sites by 

applying the LR method, (ii) identify possible risk factors that may explain the spatial 

distribution of cyanide contaminated areas, and (iii) identify areas of high risk so that appropriate 

remediation actions can be taken. 

We first developed a conceptual model of the spatial distribution of cyanide pollution risk. 

Factors relevant to cyanide pollution transport were then identified and probability maps for 

cyanide pollution risk were created and analysed. 

2 Materials and Methods 

2.1 Samples and study areas 

Two ASGM sites were selected for modelling cyanide contamination using LR based on their 



 

 

climatic and environmental conditions and mining activity. The first site, Zougnazagmiline, is 

located in the northern part of Burkina Faso (Fig.1a.). It is in the arid Sahelian climate zone with 

an average annual rainfall of less than 600 mm and contains primarily lixisols (FAO, 1998, 

2001). All mining activities are illegal, and cyanidation takes place at several locations. The 

second area, Galgouli, is located in southern part of Burkina Faso (Fig.2a). It is a forest zone 

characterised by the Soudanese climate with an annual rainfall of 1200 mm and contains 

primarily arenosols (FAO, 1998, 2001). The site is controlled by a single private operator who 

holds a mining permit. Although cyanidation processing is illegal in Burkina Faso, it is still 

conducted in the area. However, as opposed to the Zougnazagmiline site, cyanidation takes place 

in only one location. 

Two samples were collected from each site, in March 2015 and in April 2016.More than thirty 

points covering the cyanidation zones, catchment areas boundaries and outlets and the mining 

villages were selected for soil sampling (Fig. 1)., Five soil samples were collected at each 

sampling point in 20 cm intervals from the surface to 1 m depth. Immediately following 

collection, samples were wrapped in black plastic bags and kept in a cooler until arrival in the 

laboratory, where they were refrigerated until analysis, which was usually performed after 24 

hours. 



 

 

 

 

 



 

 

Figure 1: Site locations and sampling points: (a) Zougnazagmiline, (b) Galgouli 

2.2 Chemical reagents and analytical methods 

The chemical reagents used, FCN extraction protocol and FCN analytical methods are described 

by Razanamahandry et al. (2016).  

2.2 Logistic regression 

2.2.1 Principle 

Logistic regression (LR) isused to explain an observed or dependant variable through one or 

more independent predictor, or explanatory variables. In the present study, FCN concentrations 

represent the observed variable. Dependant and explanatory variables could be quantitative data. 

LR seeks and describes a relationship between the dependent variable and the explanatory 

variable (Shlutz et al., 2016) as shown in the equation (1) below:  

𝑝 =
1

1 + 𝑒−𝑦
                                                                          (1) 

Where: 

 𝑝denotes the probability of occurrence of an event, which is cyanide contamination in this case 

of this study.  

 

𝑦is a linearised regression equation (2) below: 

𝑦 = 𝛼 + β
1

𝑋1 + β
2

𝑋2 + ⋯ + β
𝑛

𝑋𝑛                              (2) 

Where: 

𝛼 : theintercept 

β
1
, β

2
,…, β

𝑛
 : the coefficients of the n explanatory variables  estimated by maximum likelihood 

(Real et al., 2006; Schultz et al., 2016) 

𝑋1, 𝑋2,…, 𝑋𝑛: the explanatory variables  



 

 

The logit form of the model is: 

𝑙𝑜𝑔𝑖𝑡 (𝑝) = 𝑙𝑜𝑔𝑒[
𝑝

1−𝑝
]                                                     (3) 

where 𝑙𝑜𝑔𝑖𝑡 (𝑝) denotes the 𝑙𝑜𝑔 (to base 𝑒) (Guns & Vanacker, 2012; Schultz et al., 2016). 

Equation (1) gives the probability of occurrence. A hazard map can then be established by 

considering the cyanide guide value of 0.5 mg FCN kg-1applied by World Health Organisation 

for agricultural soil in Burkina Faso. Values greater than0.5 mg kg-1pose a health risk. In this 

work, LR was used for finding independent variables related to cyanidation pollution and to 

produce a cyanide contamination hazard map.  

The Receiver Operating Characteristics (ROC) curve assesses the predictive capability of a 

model by considering its trade-off between rates of true positive and true negative predictions 

(Van Den Eeckhaut et al., 2006; Wang et al., 2011; Schultz et al., 2016). A probability cut-off 

between high and low cases or events is ultimately selected to be used with a model to maximize 

its accuracy.  

2.2.3 Model validation 

Models were evaluated based on a number of statistical measurements, for example, the 

statistical coefficient as the Akaike Information Criterion (AIC) and the negative of twice the 

likelihood (-2 log L or LogLik-ratio), which is lower for a better fitting model (Allison, 2011). 

AIC is a relative goodness-of-fit statistic for comparing logistic regression models (Saefuddin et 

al., 2012). Lower AIC and - 2 log L values generally correspond to a better fitted model (Allison, 

2011). Since AIC penalizes a model for using more parameters, minimizing the AIC optimizes 

the trade-off between goodness-of-fit and the number of parameters (Mcnew et al., 2013;Schultz 

et al., 2016). The Wald value of a variable coefficient is used to calculate its p-value, or 

significance, which should be equal to or less than 0.05. The Area Under the ROC Curve (AUC) 



 

 

typically ranges in value between 0.5 and 1, with values higher than 0.7 generally indicating 

stronger associations between the predicted and observed values (Van Den Eeckhaut et al., 

2006). An ROC curve is a technique for visualizing, organizing and selecting classifiers based on 

their performance (Fawcett, 2003). It has been extended for use in visualizing and analyzing the 

behavior of diagnostic systems (Fawcett, 2003; Swets, 1988). ROC curves have long been used 

in signal detection theory to depict the trade-off between true positive rates (y axis called 

sensitivity axis) and false alarm rates (x axis called specificity) of classifiers (Egan, 1975; 

Fawcett, 2003; Swets et al., 2000a). The ROC curve of a perfectly accurate logistic regression 

model would run vertically from (0,0) to (0,1) (y axis) and then horizontally to (1,1) ( x axis) 

(Brenning, 2005; Van Den Eeckhaut et al., 2006;Schultz et al., 2016).The diagonal line y = x 

represents the strategy of randomly guessing a class in which it can be expected to get half the 

positives and half the negatives correct (Fawcett, 2003). In order to get away from this diagonal 

into the upper triangular region, the classifier must exploit some information in the data 

(Fawcett, 2003). Any classifier that appears in the lower right triangle performs worse than 

random guessing (Fawcett, 2003). 

2.2.4 LR tool 

The LR model was created and downloaded from the freely available “Groundwater Assessment 

Platform” web site, provided by the Swiss Federal Institute of Aquatic Science and Technology 

(EAWAG)[Groundwater Assessment Platform (GAP), 2015]and funded by the Swiss Agency 

for Development and Cooperation (SDC).  

2.2.5 Methodological approach  

The procedure for modelling cyanide pollution was done in three steps as shown in Figure 2. The 

first step was to apply LR with all of the explanatory variables, which were evaluated according 



 

 

to their p-values. Variables with p-values less than or equal to 0.05 were retained. In the second 

step, the same explanatory variables from the first step were used in a stepwise LR (SLR), 

whereby variables were discarded individually in consecutive steps according to their effect on 

the AIC. The produced Model 2, which was again evaluated based on the selected explanatory 

variable coefficients (β𝑖). Explanatory variables with β𝑖 lower than the respective Wald value 

were retained for use in producing the final model, Model 3.   

A map of cyanide pollution hazard was created for each model. This map has a raster surface 

with a cell size X = 0.000171 and Y = 0.000171 and an angular units degree that contains 

continuous probability values ranging from 0 to 1,obtained by interpolating on a grid the 

predicted coefficient value points under ArcGIS software 10.1 version. The Inverse Weighted 

Distance (IDW) method was used for interpolation. This method determines the grid's cell values 

by using a linearly weighted combination of a set of the evaluation points (Schlutz et al., 2016). 

The cyanide pollution risk maps have been classified into five risk levels (very low, low, 

moderate, high, very high), based on the following cut-off values: 0.20, 0.40, 0.60, 0.80, and 1.



 

 

 

Figure 2: Methodological approach for building the model of cyanide pollution 

3 Data 

The model input data comprised the dependent variable and the explanatory variables as shown 

in Table 1. Explanatory variables were chosen for use in the model based on their relationship to 

the spatial distribution of cyanide pollution according to previous studies (Kheir et 

al.,2014;Venkataraman and Uddameri,2012). The FCN concentration data used are the mean 

FCN concentrations obtained from each soil sample during the 2015 and 2016 sampling 

campaigns. The FCN concentration data were uploaded in .CSV format, whereas. All 

explanatory variables have a raster image in .tif format.  

The boundaries of the two catchment areas were also uploaded for delineating the predicted map 

of the model.  



 

 

Table 1: Model data 

Data Type Variable Coverage Source Cell 

size(X,Y),angular 

unit degree 

Geology  Continuous Independent 2013 DGMEC a 0.022689,0.022689 

Rainfall (mm) Continuous Independent 1970 - 2012 MGDb 0.024955,0.024955 

Temperature (°C) Continuous Independent 1970 - 2012 MGD 0.024955,0.024955 

Topographic elevation 

(m) 

Continuous Independent 2008 GLCFc 0.000833,0.000833 

Land use Continuous Independent 2010 BUNASOLd 0.000280,0.000280 

Soil type Continuous Independent 2010 BUNASOL 0.000289,0.000289 

Soil pH Categorical Independent 2015-2016 Present study 0.00022,0.00022 

Soil Conductivity (mS 

cm-1) 

Categorical Independent 2015-2016 Present study 9e-005,9e-005 

Distance to 

cyanidation Ponds (m) 

Categorical Independent 2015-2016 Present study 8.6e-005,7.99e-005 

F-CN Concentration 

(mg L-1) 

Categorical Dependent 2015-2016 Present study 7.99e-005,7.99e-0.005 

a: Direction Général des Mines, Energie et Carrières au Burkina Faso www.mines.gov.bf 

b: Direction Générale de la Météorologie au Burkina Faso www.meteoburkina.bf 

c: Global Land Cover Facility glcfapp.glcf.umd.edu 

d: Bureau National de Sol au  Burkina Faso www.erails.net/BF/bunasols 
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4 Results and discussion 

4.1 Factors influencing the spatial distribution of cyanide 

Table 2 summarizes the LR model of each area.  

In Zougnazagmiline, the three models have an AUC around 0.8 and p-values of 0.42, 0.05 and 

0.01 for Model 1, Model 2 and Model 3, respectively. The Loglik-ratio of Model 3 was lower 

than that of Model 1 and Model 2 (-18.96 < 0.00). All models have good AUC values greater 

than 0.7. Only the p-value of Model 2 and Model 3 are equal to or less than 0.05.  

In Galgouli, the AUC of Model 1, Model 2 and Model 3 are 0.76, 0.74 and 0.69, respectively, 

whereas their respective p-values are 0.61, 0.05 and 0.02. In regard to the AUC value, good 

model fit has been established except for Model 3 in Galgouli., which indicates that the 

explanatory variables are related to the spatial distribution of cyanide contamination [Lin et al., 

2011].  

Table 2: The p-value and the AUC values for each model 

Site Model name Loglik-

ratio 

Deviance 𝑿𝟐 Explanatory 

variable 

number 

p-

Value 

AUC 

Zougnazagmiline Model 1 0.00 32.21 9.18 9 0.42 0.79 

 Model 2 0.00 34.85 9.40 4 0.05 0.78 

 Model 3 -18.96 37.92 6.33 1 0.01 0.75 

Galgouli Model 1  0.00 46.63 7.20 9 0.61 0.76 

 Model 2 0.00 50.26 3.58 2 0.05 0.74 

 Model 3 0.00 52.25 1.59 1 0.02 0.69 



 

 

 

Figure 3 shows the ROC curves for the three models at each site. In terms of the p-value in both 

sites, the level of confidence increases from Model 1 to Models 2 and 3 (from 58 and 31 % to  

more than 95 %). Model 1 of both sites contains more explanatory variables than the other 

models. The p-values of the models improved as insignificant explanatory variables number were 

removed. In both sites, Model 1 has a p-value greater than 0.05, althoughModels2 and 3 have p-

values less than 0.05. Model 1 is not significant and was therefore removed from consideration. 

 The Log-likelihood ratios (Loglik-ratio) for all models are almost the same, except for Model 

3at Zougnazagmiline site, which was lower. 
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Figure 3: ROC curves for the (a) Zougnazagmilinesite and (b) Galgouli site 

Table 3 shows the different explanatory variables and variable coefficient for each model. For the 

Zougnazagmiline site, the significant explanatory variable is the “soil type”. However, only the 

“soil type”and the“soil conductivity”are significant for Galgouli site. The explanatory variables 

that are best correlated (p-value = 0.05) with the spatial distribution of the cyanide are “soil type” 

and the “soil conductivity” for Model 2 in Zougnazagmiline and in Galgouli, respectively. 

Venkataraman and Uddameri (2012)found similar results in modelling arsenic and nitrate 

pollutants in drinking water with a multinomial logistic regression, whereby soil and aquifer 

properties were significant.  

The soil types at the northern and southern parts of Burkina Faso are dominated by lixisols and 

arenosols, respectively (Pallo and  Sawadogo, 2011). FAO (1998,2001) defines lixisols as soils 
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with an argic layer from the soil surface to 100-200 cm depth. According to ATSDR(1997), the 

clay that is abundantly present in the argic layer inhibits FCN complexation with other metals. In 

addition, lixisols have a low level of plant nutrients and a high erodibility (FAO, 1998, 2001) and 

is a major inhibitor for plant growth and biomass production (Ehlers et al., 2010; Vitousek, 

1984). Consequently, the biological activity of microorganisms and plants is not sufficient to 

degrade or complex FCN.FCN is therefore easily released, resulting in a positive correlation 

between soil type and FCN at Zougnazagmiline. 

On the other hand, arenosols are characterised by sandy loam soils with low conductivity[FAO, 

1998, 2001], which means that several cations and minerals are available in a low quantity 

[FAO,1999].Most of the FCN is released because the CN- ligand does not form a complex 

compounds with the cations[Dai et al., 2012; Ghosh et al., 2006; Kjeldsen, 1999; Theis and West, 

1986]. For this reason, soil conductivity mainly influences the distribution of FCN in Galgouli.  

 

Table 3: Explanatory variables coefficients for Zougnazagmiline and Galgouli 

 Model 

name 

Variable Coefficient Std error Wald Significance Odds Lower Upper 

ZOUGNAZAGMILINE SITE 

Model 1                 

  Intercept 0.0249 0.1631 0.1527 0.8786 1.0252 0.7447 1.4113 

  Geology 1.6255 2.2138 0.7343 0.4628 5.0808 0.0663 389.241 

  Rainfall  (mm) -0.0476 0.1583 -0.3005 0.7638 0.9535 0.6991 1.3005 

  Temperature (°C) 0.7543 4.9391 0.1527 0.8786 2.1261 0.0001 34010.2 

  Soil pH 2.182 5.3559 0.4074 0.6837 8.8642 0.0002 320932 

  Distance to cyanidation 

ponds (m) 

0.0006 0.0008 0.7225 0.47 1.0006 0.999 1.0022 



 

 

  Topographic elevation 

(m) 

-0.1166 0.8138 -0.1432 0.8861 0.89 0.1806 4.3862 

  Soil conductivity (mS 

cm-1) 

0.0026 0.0089 0.2883 0.7731 1.0026 0.9853 1.0202 

  Soil type 0.0093 0.0111 0.8351 0.4036 1.0093 0.9876 1.0315 

  Land use 0.064 0.6424 0.0996 0.9207 1.0661 0.3027 3.7549 

Model 2                 

  Intercept -3.2791 2.6349 -1.2445 0.2133 0.0377 0.0002 6.5869 

  Distance to cyanidation 

ponds (m) 

1.008 1.1631 0.8666 0.3861 2.7402 0.2804 26.7788 

  Soil conductivity -0.0054 0.0052 -1.0223 0.3066 0.9947 0.9845 1.0049 

  Soil type 0.0139 0.0071 1.9462 0.0516 1.0139 0.9999 1.0282 

  Land use -0.0818 0.486 -0.1683 0.8663 0.9215 0.3555 2.3887 

Model 3                 

  Intercept -1.2978 0.8099 -1.6025 0.109043 0.2731 0.0559 1.3357 

  Soil type 0.0092 0.0039 2.3839 0.017131 1.0093 1.0016 1.017 

GALGOULI SITE 

  Model 1         

 Intercept 0.02 0.978 0.0205 0.9837 1.0202 0.1501 6.9358 

 Geology 0.02 0.978 0.0205 0.9837 1.0202 0.1501 6.9358 

 Rainfall  (mm) -0.0167 0.7233 -0.0231 0.9816 0.9835 0.2383 4.0588 

 Temperature (°C) 0.5488 26.8382 0.0204 0.9837 1.7312 0 1E+23 

 Soil pH -0.1987 0.2716 -0.7316 0.4644 0.8198 0.4814 1.3961 

 Distance to 

cyanidation ponds 

0.0004 0.0009 0.4595 0.6459 1.0004 0.9987 1.0021 

 



 

 

 

(m) 

 Topographic 

elevation (m) 

0.0029 0.0206 0.1387 0.8897 1.0029 0.9632 1.0442 

 Soil conductivity 

(mS cm-1) 

0.0005 0.0003 1.5717 0.116 1.0005 0.9999 1.0011 

 Soil type 0.0729 0.4133 0.1765 0.8599 1.0757 0.4785 2.4183 

 Land use 0.4548 0.7563 0.6014 0.5476 1.5759 0.3579 6.9393 

Model 2         

 Intercept -1.3562 0.5675 -2.3899 0.0169 0.2576 0.0847 0.7835 

 Soil type 0.3126 0.2282 1.37 0.0707 1.367 0.8741 2.138 

 Soil conductivity 

(mS cm-1) 

0.0004 0.0003 1.4247 0.054 1.0004 0.9999 1.0009 

Model 3         

 Intercept -0.8933 0.4342 -2.0575 0.0396 0.4093 0.1748 0.9585 

  Soil conductivity 

(mS cm-1) 

0.0003 0.0003 1.22 0.023 1.0003 0.9998 1.0008 

         

4.2 Cyanide contamination hazard 

4.2.1 Cyanide hazard map 

Figures 4 and 5 show the probability maps of the spatial distribution of cyanide contamination in 

Zougnazagmiline and Galgouli.  

In Zougnazagmiline, cyanide contamination probability varies from very low to moderate near 

the catchment boundary, irrespective of the model. Figure 4 [Model 1] displays an over-

predicted model for cyanide contamination hazard. In fact, the very high probability (p = 0.80 - 

1) for cyanide contamination covers over 50% of the catchment area. Figure 4 [Model 2] and 

[Model 3], however, more precisely defines the zones that present a very high risk of cyanide 



 

 

contamination, which represent 30% and 20% of the total surface area, respectively. 

The zones with the greatest probability are near the cyanidation zones, which  was expected. Part 

of the river bank also has a high chance of cyanide contamination, which is due to the river bank 

often containing clay, in which FCN is likely to be present. 

On the other hand, there is a low probability of cyanide pollution around the catchment outlet as 

shown in Figure 4 [Model 3]. This is likely due to FCN volatilisation and dilution into the main 

stream flow because FCN is very soluble in surface water (Dash et al., 2009; Lötter, 2005) . 
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Figure 4 : Probability map for cyanide contamination risk at the North.  

Model 1 of Galgouli(Fig. 5)is also over-predicted. The areas of high probability of cyanide 

contamination cover about40% of the total surface area. Model 2 and Model 3 in Figure 5 and 

give almost the same spatial distribution of cyanide in soil, with only 5% of the catchment area 

having a very high probability of cyanide contamination, which corresponds to the cyanidation 

zone. The explanatory factors selected in Model 2 and Model 3 are significantly correlated with 

and explain the spatial distribution of cyanide.  

The area of predicted FCN contamination represents less of the catchment at Galgouli (5%) than 

at Zougnazagmiline (20%). 

Botz et al. (2015),Bureau et al. (2011) and  Kjeldsen (1999) have reported that FCN could take 

the anion cyanide form (CN-) that reacts with metal cations under high pH conditions. 

Furthermore, Nsimba (2009) and Wong-chong et al.(2006) found that FCN takes the gaseous 



 

 

form HCN and could easily volatilize under acidic conditions. The climate of Zougnazagmiline 

is arid with a basic soil, whereas Galgouli is humid with acidic soil. Therefore, CN- is the 

dominant component of FCN in Zougnazagmiline whereas HCN is more available in Galgouli. 

Our results suggest that FCN accumulation in arid Zougnazagmiline and volatilisation in humid 

Galgouli. The soil characteristics could influence the cyanide spatial distribution in the soil.  

Since ASGM activities are more organized in Galgouli, the cyanidation zone is concentrated in 

one place. This is not the case in Zougnazagmiline, where the cyanidation zones were distributed 

throughout the catchment area, which increases the area subject to contamination. It could be a 

reason explaining the probability difference between the two sites. 
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Figure 5 : Probability map for cyanide contamination risk at the South.  

As said in previous paragraph, FCN was more fixed by the Zougnazagmiline soil than by that of 

Galgouli. It was reported that greater biological activity is observed in regions dominated by 

arenosols, which is characterised by sand particles, clay and sediment in which some structure 

and fertility are provided (FAO, 1998, 2001).  Therefore, most of the FCN present in Galgouli 

was degraded by microbial activity, or reduced by vegetation uptake and complexation with 

metals, explaining the small area covered by FCN contamination (Figure 5).   

4.2.2 Cyanide contamination exposure 

The exposure of the populated areas (hamlets) to cyanide contamination is presented with Model 

3 in Figures 4 and 5. More than 20% of the hamlets at Zougnazagmiline are exposed to cyanide 

contamination, whereas only 5% of the hamlets are exposed in Galgouli.  

(a) 
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Figure 6: Cyanide contamination exposure (a) in Zougnazagmiline and (b) in Galgouli 

5 Conclusions 

ASGM is the primary economic activity of the people of Zougnazamiline and Galgouli. Since 

water and soil contamination by cyanide is widespread at these sites, it was deemed necessary to 

determine the most vulnerable areas in order to prioritize restoration of the degraded ecosystem. 

Environmental factors related to the spatial distribution of cyanide have been evaluated. Three 

predictive models using LR were created for each site, which have different climate conditions 

and soil characteristics. The most important factors influencing the FCN distribution are the soil 

type in Zougnazagmiline and the soil conductivity in Galgouli. Therefore, when the zone is arid, 

only the soil type would influence the FCN distribution but if it is humid, both the soil type and 

the soil conductivity would be the main influencing parameter. Environmental factors such as the 

distance from cyanidation zones, topographic elevation and land use are likely to increase 



 

 

cyanide contamination risk.  Since the soil conductivity and soil type are dependent upon the soil 

composition, that aspect needs to be investigated in depth to fully understand FCN distribution in 

ASGM affected areas. Moreover, the LR model should also be tested in the zone under 

Soudanese-Sahelian climate to determine the main parameters that influence the FCN 

distribution in semi-arid areas. This would then allow for the prediction of FCN distribution for 

any ASGM area in Burkina Faso based on its climate and soil characteristics. 
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