SUSTAINABILITY OF THE GEDIZ BASIN-TURKEY: A WATER – ENERGY AND FOOD NEXUS APPROACH

by Adnan DEGIRMENCIOGLU¹, Rabi H. MOHTAR², Bassel T. DAHER², Gulden O. ERTUGRUL³

 ¹Ege University, Faculty of Agriculture, Department of Agricultural Engineering & Technology, Bornova-İzmir, Turkey 35100
 ²Texas A&M University, Department of Biological and Agricultural Engineering, College Station-Texas, USA 77843
 ³Ahi Evran University, Faculty of Agriculture, Department of Biosystems Engineering, Kırsehir, Turkey 40100 to determine the water and energy tradeoffs to the food production and the development of forward looking scenarios that ensure the optimal use of these resources

QUESTIONS & ANSWERS

What is the current status of the Gediz Basin?

What are the input and output relations?

Which crops govern the basin?

- How climate change and urbanization along with the changes in technologies and sources will affect the sustainability?
- Will the farming and crop production be sustainable in the future?

LOCATION OF THE BASIN

FRAMEWORK

LAND SIZE AND DISTRIBUTION (TIE-2014)

FIELD CROPS (31)

Total Land size for field crops: 274490.8 ha

Barley Beans (Dried) Beans for table Chick pea Clover Corn Corn for silage Cotton Groundnut Horse bean Italian ryegrass Lenox Lentil Oat Oat (green) Poppy

Potato Rye Sesame Sorghum (green) Sugarbeet Sunflower Sweet pea Tobacco Trefoil Triticale (grain) Triticale (grass) Vetch Vetch (Burcak) Vetch (green) Wheat

VEGETABLES (39)

Total Land size for vegetables: 45505.6 ha

- X- Beans dried X- Broccoli X- Cabbage X- Calavence X- Carrot X- Cauliflower X- Celery X- Cucumber X- Dill weed X- Eggplant X- Fresh beans X- Fresh beans X- Fresh mint X- Garlic (dried) X- Garlic (fresh) X- Green pepper X- Hairy cucumber X- Horse Beans fresh X- Kidney beans (dried)
 - X- Kidney beans (fresh) X- Leek X-Lettuce X- Melon X- Okra X- Onion (Dried) X- Onion (fresh) X- Parsley X- Pumpkin X- Radish X- Red beet X- Rocket X- Spanich X- Swisschard X- Tomato X- Turnip X-Watermelon X- Zucchini squash X-Artichoke

X-Cress

FRUITS (25)

Total Land size for vegetables: 293920.8 ha

- Z- Almond
- Z-Aniseed
- Z- Apple
- Z- Apricot
- Z- Blackberry
- Z- Cherry
- Z- Chestnut
- Z- Fig
- Z- Mandarin
- Z- Olive
- Z- Orange
- Z- Peach
- Z- Pears

- Z- Persimmons
- Z- Pistachio
- Z- Plum
- Z- Pomagranate
- Z- Quince
- Z- Raisins
- Z- Sourcherry
- Z- Strawberry
- Z- Table grape
- Z- Thyme
- Z- Vineyard
- Z- Walnut

CROPS GROWN (top fifteen)

TOWN BASED CROP PRODUCTION (Barley example)

					Average
				Tractor	Tractor
		Total production		Use	power
Town	Production Area (ha)	(tons)	Yield (t/ha)	(h/ha)	(kW)
Buharkent	78.5	220	2.80	13.1	29.66
Köşk	50	185	3.70	13.1	34.15
Kuyucak	700	2,656	3.79	13.1	30.64
Nazilli	827.2	2,979	3.60	13.1	32.93
Sultanhisar	40	131	3.28	13.1	29.1

TRACTOR RUN TIME (Barley example)

DIESEL CONSUMPTION

$$Q_{avg} = 0.223 \cdot P_{ptc}$$

Qavg = average diesel fuel consumption (L/h) $P_{\text{restored PTO power }kW}$

 P_{pto} = the rated PTO power, kW

Consumption (L) = Q x Time spent per ha

TRACTOR POWER DISTRIBUTION IN TOWNS

TRACTOR DIESEL CONSUMPTION

Field crop	Gasoline consumption
Field crop	(L/ha)
Barley	47.855
Dried beans	113.58
Table beans	38.055
Chick pea	82.55
Clover	43
Corn for silage	131
Corn	159.12
Cotton	222.03

Field crop	Seasonal water requirement (m ³ /ha)	Irrigation requirement (m ³ /ha)
Barley	4709.1	419.34*
Dried beans	4790	3634.8
Table beans	4790	3634.8
Chick pea	4680.9	3752.3
Clover	10143.8	7293.1
Corn for silage	2530	1794.9

Source: Canli ,2014 – calculations based on Penman-Monteith (FAO) procedure

CROP WATER REQUIREMENT ADJUSTMENTS

	Nitrate (kg/ha)	Phosphate (kg/ha)	Potassium (kg/ha)
Barley	90	40	0
Beans (Dried)	252.7	69.4	43.8
Beans for table	90	125	150
Chick pea	40	40	0
Clover	132.1	75	75
Corn	272.7	166.6	0
Corn for silage	272.7	166.6	0
Cotton	185.4	125	0

	Domestic Financial
Field Crop	Value (TL/ton)
Barley	620
Beans (Dried)	3690
Beans for table	1920
Chick pea	2330
Clover	520
Corn	620
Corn for silage	280
Cotton	1470

ENERGY AND CARBON EMISSION DATA

Energy need (kJ/kg)					
Nitrogen	Phosporus	Potassium			
78230	17500	13800			

÷					
	Energy need for water (kWh/m ³)				
	Groundwater	0.4068			
	Surface water by GDSHW	0.209			
	Groundwater by Solar Energy Solar	0.406			

Carbon emissions of different sources			
Diesel gasoline*	0.002357 tons CO ₂ /L or 778 g CO ₂ /kWh		
N, P and K fertilizers**	0.0026 tons/ kg		
Hydroelectric power***	24 g CO ₂ /kWh		
Solar panel toproof***	32 CO2/kWh		

Near Future Scenarios

Long Term Scenarios

Both, climate change and solar energy use were considered in the near future scenarios.

CLIMATE CHANGE CONSIDERATIONS IN THE NEAR FUTURE SCENARIOS

5% of the total water used for irrigation was assumed to be pumps that use solar energy

- **NFNSSE0** Normal season and no solar energy used
- **NFNSSE05** Normal season with %5 solar energy use
- **NFHSSE0** Hot season and no solar energy used
- **NFHSSE05** → Hot season with %5 solar energy use
- **NFCSSE0** Cold season and no solar energy used
- NFCSSE05 → Cold season with %5 solar energy use

OUTPUT FOR THE YEAR 2014 - NFNSSE0 (top 15 crops)

Normal season and no solar energy used

OUTPUT FOR THE YEAR 2014 - NFNSSE0 (other 80 crops)

Normal season and no solar energy used

w	Water (m ³)	275473062.6				Water saving (m ³)	
L	Land (ha)	84059.9				Land saving (ha)	
			,			(
	Eours (k l)	220052130725 1	ו ו	E. (k l)			
E1	EGWE (KJ)	0.0		3 19076E+11			
	Eswg (kJ)	89124350895.6		0.100702111			
			,		$E = E_1 + E_2 (kJ)$		
					1.87041E+12		
	E _{farming} (kJ)	410533522326.2]				
E ₂	Etransport (kJ)	32178345957.3		E₂ (kJ)			
	E _{fertilizer} (kJ)	1108624386374.1	J	1.55134E+12			
						E _{imp} (kJ)	
	1		1 1			C _{imp} (tons)	
F	Flocal (TL)	2543810570.0		F (TL)			
	Fimport (TL)	0	J	2543810570			
	Cowe (tons)	1533 014205	ן ו	C1 (tons)			
C 1	C _{GWS} (tons)	0		20793.8			
	Cswg (tons)	19260.8					
			,		$C = C_1 + C_2$		
					(tons)		
			1	l	11/225.2		
	$C_{(i)}$ (topc)	26583.2					
C ₂	C _{farming} (tons)	26583.2		C ₂ (tons)			

$$S_{r} = \left(\frac{O - O_{b}}{P_{b \pm \Delta} - P_{b}}\right) \frac{P_{b}}{O_{b}}$$

 S_r is the relative sensitivity value, O is the new output, O_b is the output of base scenario, P is new parameter value, P_b is the base parameter value in base scenario. "b" is the base average value and Δ represents the change in parameter value from base

Source: Daher, 2012

Land

ENERGY SENSITIVITY RATIO

CARBON SENSITIVITY RATIO

$$C = C_1 + C_2$$

$$C_1 = C_{GWe} + C_{GWs} + C_{SW}$$

$$C_2 = C_{farming} + C_{transport} + C_{fert}$$

С

0.18 0.16 0.14 0.12 0.1 ۲ ۲ 0.08 0.06 0.04 0.02 0 Clover Cotton Potato Vetch Wheat z- Olive Corn Barley Corn for silage Tobacco X- Tomato Z- Cherry Z- Fig Z- Raisins Z- Table grape

GROUPING CROPS BASED ON THE SENSITIVITY RATIOS

ENERGY REQUIREMENTS IN NEAR FUTURE SCENARIOS

S.I. $i = [WI_i(100-I_W) + LI_i(100-I_L) + EI_i(100-I_E) + CI_i(100-I_C) + FI_i(100-I_F) + CI_i(100-I_C) + CI$

EIMP $I_i (100-I_{EIMP}) + CIMP I_i (100-I_{CIMP})]/100$

Wi = the total water needed for scenario i

- Li = the total land area needed for scenario i
- Ei = the total local energy needed for scenario i
- Ci = the total local carbon emitted by scenario i
- Fi = the total finances for scenario i

Wa = total max acceptable water extracted and produced by available water resources

- La = max acceptable/arable local land use
- Ea = max acceptable energy use
- Ca = max acceptable carbon emissions
- Fa = max acceptable limits for expenditures to supply food locally and through imports

$$I_W + I_L + I_E + I_C + I_F + I_{EIMP} + I_{CIMP} = 100$$

Assessment parameters
E-IMP C-IMP E F C W L

SUSTAINABILITY INDEX FOR NEAR FUTURE SCENARIOS

LONG TERM SCENARIOS (CLIMATE CHANGE)

URBANIZATION

CHANGES IN TECHNOLOGY AND SOURCES

Solar energy use for groundwater pumping was increased and assumed to be 5, 10 and 15 % of the total water need was pumped by solar energy use for the years 2030, 2040 and 2050, respectively

Surface water use was increased from 43 to 53% in some of the long term scenarios since the General Directorate of State Hydraulic Works will be implementing some projects As a result of urbanization, climate change, and considering changes in surface water use and solar energy use, 12 scenarios for each year (2030, 2040 and 2050) were developed in the study.

LONG TERM SCENARIOS – URBANIZATION

LONG TERM SCENARIOS – CLIMATE CHANGE

2030UHS — HS stands for hot season with less precipitation

LONG TERM SCENARIOS – SOLAR ENERGY

- 2030UNS**SE0** Normal season and no solar energy used
- 2030UNS**SE5** Normal season with %5 solar energy use
- 2040UNS**SE0** Normal season and no solar energy used
- 2040UNS**SE10** Normal season with %10 solar energy use
- 2050UNS**SE0** Normal season and no solar energy used
- 2050UNS**SE15** Normal season with %15 solar energy use

2030UCSSW53SE0

2030UCSSW53SE5

2030UHSSW53SE0

Normal, Cold and hot season with increased surface water use (from 43 to 53%) and with/without solar energy of 5%)

2030UHSSW53SE5

2030UNSSW53SE0

2030UNSSW53SE5

CHANGES IN LOCAL COSTS IN LONG TERM SCENARIOS

WATER REQUIREMENTS IN LONG TERM SCENARIOS

W (m3)

ENERGY NEEDS IN LONG TERM SCENARIOS

CARBON EMISSIONS IN LONG TERM SCENARIOS

C (tons)

SUSTAINABILITY INDEX IN LONG TERM SCENARIOS

SUSTAINABILITY INDEX IN LONG TERM SCENARIOS

SUSTAINABILITY INDEX IN LONG TERM SCENARIOS

TRADEOFFS

TRADEOFFS – REDUCTION IN SELF SUFFICIENCY VS POPULATION GROWTH

TRADEOFFS – REDUCTION IN PRODUCTION VS EXPORT

100.00

96.00

92.00

88.00

84.00

Green pepper

TRADEOFFS – REDUCTION IN PRODUCTION VS EXPORT

TRADEOFFS – SURFACE WATER USE AND GROUNDWATER LEVEL

Increase in surface water use from 43 to 53% and cold season may help the recovery of groundwater depth

CONCLUSIONS

- The crop pattern in the region is an effective parameter for land allocation and water demand and olive, wheat and raisin production are considered to be the governing crops in the basin in this respect. Changes in the crops pattern in the future may cause a shift toward more water need and/or land allocation. Hence, the management in the basin requires to create linkages between natural sources.
- It may be concluded that the self sufficiency and sustainability in the basin will worsen in the long term as compared to the year 2014.
- The reduction in land as a consequence of urbanization and water scarcity due to climate change are inevitable but in order to keep the sustainability at the same level, varieties that are resistant to drought should be selected while some new farming practices such as direct planting and employing drip irrigation systems in the production should be considered seriously.

CONCLUSIONS

- Environment friendly applications in agriculture are believed not only reduce energy inputs but also will help the sources to be less polluted. These applications could be stated as the implementation of precision farming in agricultural operations along with the use of solar energy to reduce carbon emissions.
- The WEF Nexus concept is a well suited concept to study the basins in Turkey. Applying the concept to the other basins is of importance so that whole country profile can be obtained and then WEF Nexus concept that will include import materials from other countries can be applied.

SUSTAINABILITY OF THE GEDIZ BASIN-TURKEY: A WATER – ENERGY AND FOOD NEXUS APPROACH

THANK YOU FOR YOUR ATTENTION !

by Adnan DEGIRMENCIOGLU¹, Rabi H. MOHTAR², Bassel T. DAHER², Gulden O. ERTUGRUL³

¹Ege University, Faculty of Agriculture, Department of Agricultural Engineering & Technology, Bornova-İzmir, Turkey 35100 ²Texas A&M University, Department of Biological and Agricultural Engineering, College Station-Texas, USA 77843 ³Ahi Evran University, Faculty of Agriculture, Department of Biosystems Engineering, Kırsehir, Turkey 40100