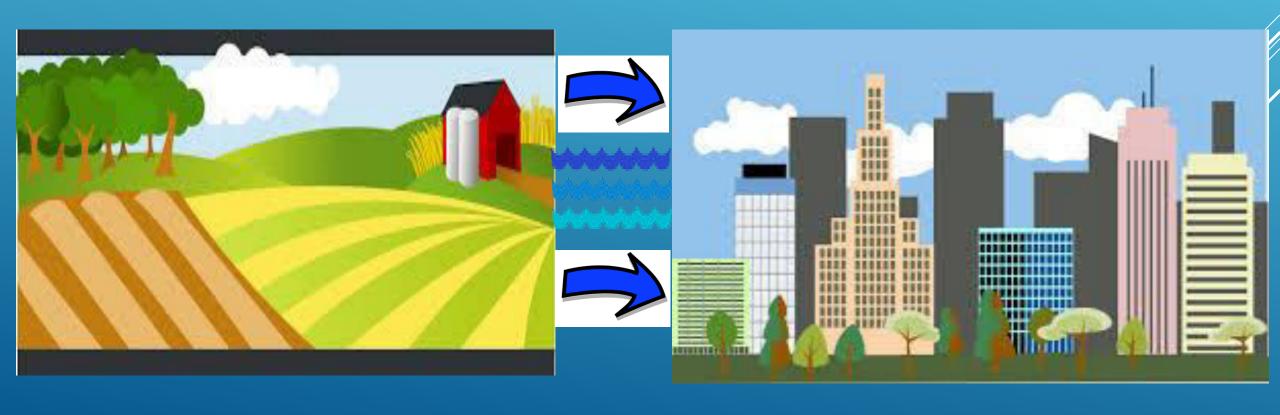
Marketing Conserved Water: Lessons from Australia for the Western United States

World Water Congress XV Edinburgh, 28 May 2015

Professor Mark Squillace, University of Colorado Law School, Boulder, Colorado
Anthony McLeod, General Manager, Water Resources Planning, Murray-Parling Basin Authority, Canberra, Australia


The Problem

► Property rights regimes for water can be inflexible, protecting historic rights at the expense of present needs

- ▶ Property rights in water are too often defined in ways that make it hard to buy and sell them (non-fungible)
- ► Agricultural users fear loss of dominant position and are wary of change
- ► Political systems tend to protect agricultural rights regimes

Another view of the problem How do we move water from ag to urban use?

A proposed solution

- ► Recognize as Australian did that (some) water rights must be defined in fungible units of trade
 - ► For the Western U.S. this means defining water in terms of <u>water consumption</u>
- ► For political reasons, limit water marketing to schemes that protect agricultural communities
 - ► By allowing the transfer of "conserved water" only farmers can keep farming

What is "conserved water"

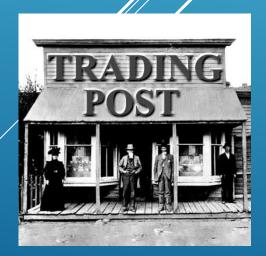
- ▶ It's not water that was being reused by others
 - ► For example, changing inefficient irrigation practices that provide return flows to downstream users
- ▶ It's water that is saved by reducing consumption
 - ► Crop switching
 - **▶** Deficit irrigation
 - ► Rotational fallowing

Water savings from crop switching

Crop	Crop water need (mm/season)	Mean crop water need (mm/season)	Potential water savings from alfalfa baseline (%)
alfalfa	800-1600 (508-1200)	1025	0
soybeans	450-700	575	44%
barley	450-650	550	46%
bean	300-500	400	61%
beets	250-380	315	69%
cantaloupe	350-500	425	59%
maize	500-800	650	37%
potato	500-700	600	41%
sugar beet	550-750	650	37%
sunflower	600-1000	800	22%
sweet potato	250-350	300	71%

Water savings from deficit Irrigation

Crop	Potential Water Savings	Potential Yield Reductions
Alfalfa	up to 33% (varies by region)	~25% (varies by region)
Maize	24% (55-60% during early vegetative stages)	no significant reduction
Rapeseed	40%	8%
Almonds	11%	little decline, but slightly smaller kernel size
Pistachio	23.20%	no reduction
Citrus	25%	no decrease in profits (reduced yield, but higher quality)


Rotational Fallowing

Year 1	Year 2	Year 3	Year 4	Year 5
Year 6	Year 7	Year 8	Year 9	Year 10
Year 6	Year7	Year 8	Year 9	Year 10
Year 1	Year 2	Year 3	Year 4	Year 5

- 10% of land fallowed; 10% of water can be marketed
- Patterns may vary but generally fallowed lands are rotated
- Less productive lands can be fallowed
- Periodic resting of lands restores nutrients
- Palo Verde Irrigation
 District (PVID) example

Translating savings to marketable water

- In stressed water systems and absent transaction costs, conserved water should have a high market value
- ► But legal regimes in the Western U.S. make transfers difficult and expensive (high transactions costs)
 - ►"No injury" rule
 - ▶ In most states no legal right to sell conserved water
 - ► Quantifying marketable units poses challenges

Lessons from Australia

- ► Australia sets a cap at <u>sustainable levels</u> of water use
 - ► Water rights are separated from land rights
 - ► Water rights are defined in fungible (tradable) units
 - ▶ Vast amounts of water are traded quickly and efficiently
 - ► Temporary (seasonal) trades typically take 5 days or less
 - ▶ Permanent rights are traded in 20 days or less
 - ► The process is entirely transparent with prices and trading information available on the MDBA website

Applying the lessons to the American West

- Despite its attraction, capping water rights in much of the American West is politically impractical, especially in the short term
 - ► But water rights could be redefined in fungible units
 - Instead of solely by diversion amounts by the amount historically consumed
- ► States could then allow the transfer temporary of permanent of any water not consumed over a given period

What would it take?

- ► Limiting transfers to "conserved water" might gain better acceptance in the agricultural community
 - ► Except in California will require legislation
- ► Will require administrative agency to define baseline water rights AND quantify conserved amount
- ► Must be a transparent process with a deferential standard that discourages challenges
 - ► Keep transaction costs low and afford the public confidence in the integrity of the process and numbers

Improve verification systems

- ► Employ drones and on the ground inspections to verify changes in crops and land fallowing
- ► Require audits of lands subject to deficit irrigation
- ► Make reporting and inspection information transparent to other water users and the public on the internet

Conclusion

- ► Allowing farmers to market conserved water might flip current incentives to over-consume water
 - ► Will require defining rights as fungible units
 - ► Streamlining/reforming the transfer process is critical
- ► A viable market could free cities of the current practice of hoarding water
- ► Additional research needed to verify potential water savings