

IWRA WORLD WATER CONGRESS XV EDINBURGH, 25-29 MAY 2015

Water conservation with novel application of fault detection diagnostics (FDD) applied to a rain water harvesting system in Ireland

Presenter: Niall Chambers, Masters Student.

25/05/2015

Wat€rnomics

1. Introduction to *Waternomics* Project

2. Fault Detection & Diagnosis (FDD) & Case Study

3. Methodology & Results

4. Conclusions

1. Introduction

Waternomics

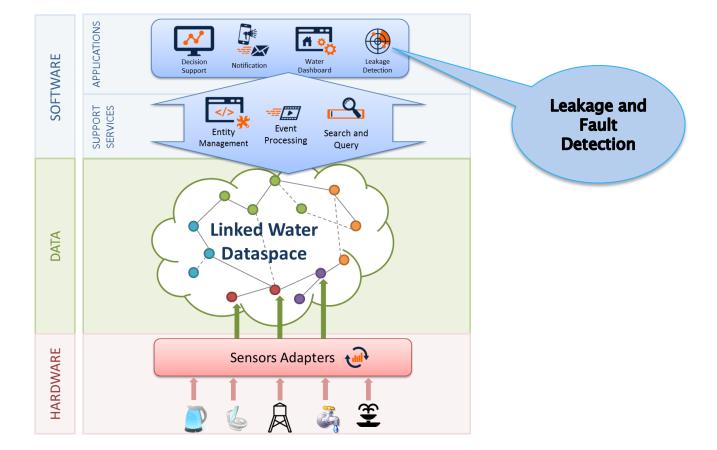
Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 619660)

🤎 @WATERNOMICS_EU

PROBLEM DESCRIPTION

Wat*E***rnomics**

Buildings use 21% of all water in the EU

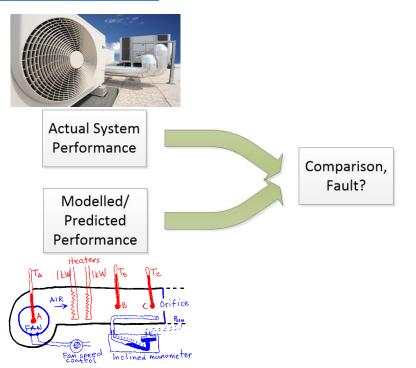

Estimated 20-30% of this wasted or leaked

@WATERNOMICS_EU

ICT SOLUTION

Wat*E*rnomics

🤎 @WATERNOMICS EU


2. Fault DetectionDiagnostics (FDD)& Case Study

@WATERNOMICS_EU

FAULT DETECTION AND DIAGNOSTICS (FDD)

- Measurement Science/Analytic tool
- Applied in space industry, Automated systems, HVAC etc.

- Reduces Downtime
- Improves Maintenance Effectiveness

Wat*E*rnomics

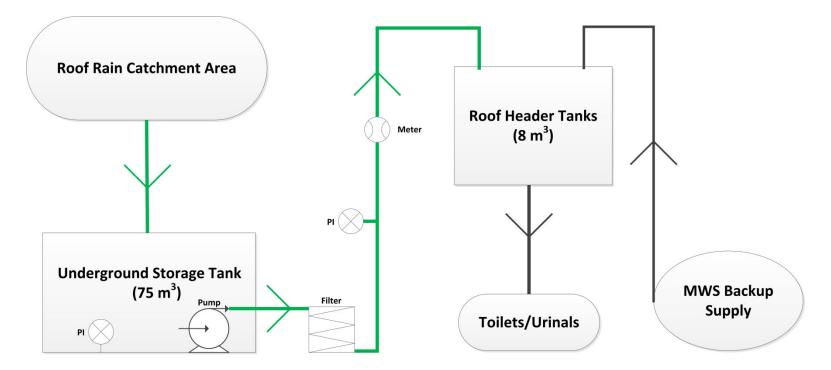
www.waternomics.eu

🤎 @WATERNOMICS EU

IRELAND'S PILOT SITE / CASE STUDY

Wat*E*rnomics

National University of Ireland, Galway Engineering Building



- Commissioned and Occupied in 2011
- ~1,000 Students & 100 Staff
- 5200 m² Plan Area, 4 Storeys
- Labs, Classrooms, Café, Toilets & Showers etc.

@WATERNOMICS_EU

ENGINEERING BUILDING RAINWATER HARVESTING SYSTEM

💴 @WATERNOMICS EU

www.waternomics.eu

Wat€rnomics

4. Methodology& Results

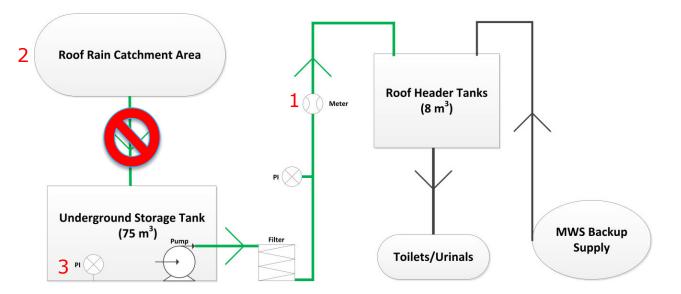
@WATERNOMICS_EU

APPROACH / ASSUMPTIONS

Intermittent Expert Judgement

Continuous Automated Inspection Process

Signals and readings from the system can be utilised to identify a fault within the system

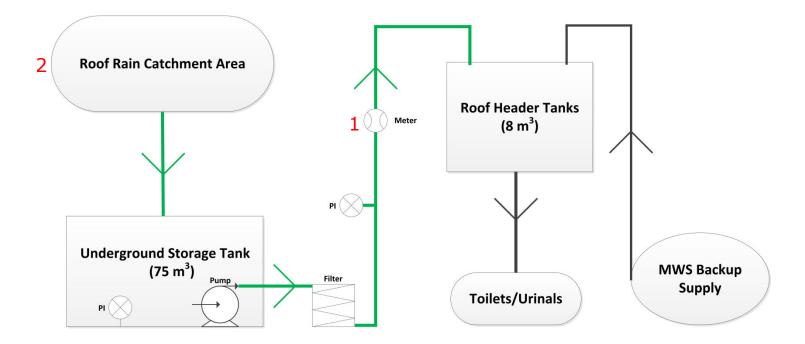


www.waternomics.eu

Wat€rnomics

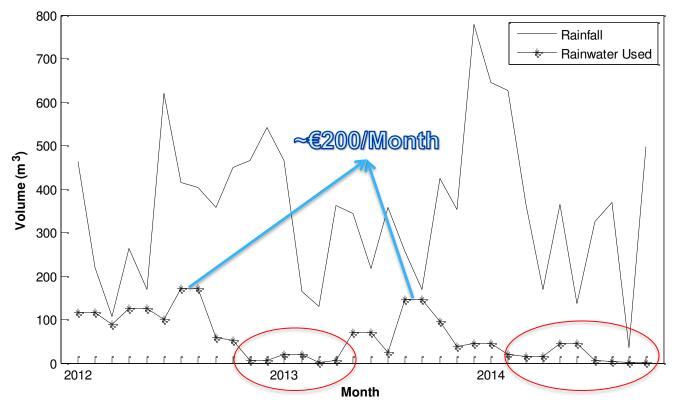
EXAMPLE FAULT

Wat*E*rnomics


No.	RWH Signal			
1	Rain Water meter = 0 m ³ /week			
2	Rainfall = 40 m ³ /week			
3	Pressure Indicator in Storage Tank Specifies = 0 m ³			

= Blockage in Pipe

🤎 @WATERNOMICS EU


FAULT FOUND

Wat*E*rnomics

No.	RWH Signal		
1	Rain Water meter = 0 m ³ /week		

ENGINEERING BUILDING RWHS FAULT FOUND

Wat*E***rnomics**

🤎 @WATERNOMICS_EU

5. Conclusions and Questions

CONCLUSIONS

Wat*E*rnomics

- *Waternomics* will provide a software platform to improve building water management by:
 - Affecting behavioural Changes
 - Increasing user awareness
 - o Correcting leaks and malfunctions through FDD
- FDD is a proven methodology applied to many systems industries
- FDD was applied to a RWHS in a novel way
- Various levels of FDD can be applied to the system
- The most basic level of FDD identified a significant and persistent fault which will save €200/month in the Ireland Pilot site

ACKNOWLEDGEMENTS

Wat*E*rnomics

Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 619660)

Co-Authors: E. Clifford, D. Coakley, M. Keane

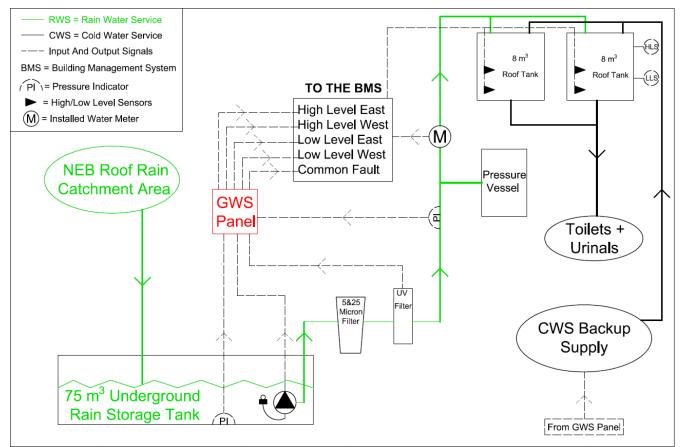
WatErnomics

FURTHER DETAILS

www.waternomics.eu

info@waternomics.eu

@WATERNOMICS EU


COMPLETE FDD TABLE

Outline of FDD Rules Conditions are Either True, False or Irrelevant Rule No. **Rules, Based on Conditions** 2 3 5 6 7 1 4 First Alarm 1 \checkmark -2 Insuficient Stored Water \checkmark \checkmark _ 3 \checkmark Insufficient Rainfall \checkmark \checkmark \checkmark - \checkmark Roof to Storage Tank Pipe Blockage \checkmark × 4 \checkmark - \checkmark \checkmark 5 Power to Pump issue × × 6 Pump Blockage/Mechanical Failure \checkmark × \checkmark 1 × \checkmark 7 Filter is Broken/Requires Servicing × × \checkmark -Leak in Pipeline/Pump Malfunction 8 \checkmark \checkmark \checkmark \checkmark ×

Waternomics

COMPLETE RWHS SCHEMATIC

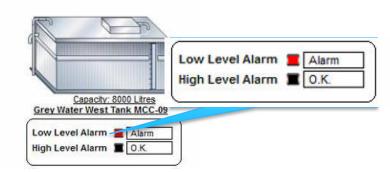
Wat*E*rnomics

У @WATERNOMICS EU

- How can I calculate the money that is being lost when I don't know how much water that the toilet and Urinal system (GWS) use in the building?
- There is a meter on the RWHS top up to the header tanks, but I'm not sure if this system ever worked to capacity i.e. serviced all of the GWS needs
- The only way that I could really find out is to place a meter on the CWS top up to one of the tanks

OUTSTANDING QUESTIONS

Wat*E*rnomics


- Where did the idea of applying FDD to water networks in the project come from?
- Was it in the brief, are other projects under this framework doing the same?

Wat*E***rnomics**

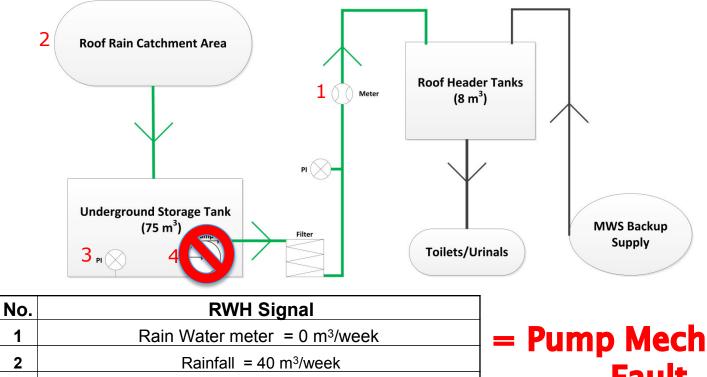
	PHASE 0	PHASE 1	PHASE 2	PHASE 3	PHASE 4
STANDARD BASED METHODOLOGY	ASSESS Water Review, Audit, Diagnosis and Commitment ISO 50002	PLAN Organizational Procedures + Baseline ISO 50001 IPMVP	DO Implementation and operation ISO 50001 IPMVP	CHECK Management and verification ISO 50001 IPMVP	ACT Certification & Review ISO 14046 Water Footprint

Grey Water Pa	inel Monitoring					
Common Fault C.K.						
Daily Total	5606.0L					
Monthly Total	5606.0L					
Accum. Total	5606.0L					
Accum. Reset	Off					
	1					

💆 @WATERNOMICS_EU

FAULT DETECTION AND DIAGNOSTICS (FDD)

- Energy in Buildings
- Provided 10-30% Energy Savings


🤎 @WATERNOMICS_EU

www.waternomics.eu

Wat€rnomics

EXAMPLE FAULT #2

Wat€rnomics

2 3 Pressure Indicator in Storage Tank Specifies = 40 m³ Power to Pump Operational? Yes 4

= Pump Mechanical Fault