Potential impacts of hydropower regulation on salmonid habitats using connectivity metrics

Bas Buddendorf, Josie Geris, Iain Malcolm, Mark Wilkinson, Chris Soulsby

www.abdn.ac.uk/nri bas.buddendorf@abdn.ac.uk 01224 27 3696

School of Geosciences University of Aberdeen Aberdeen, AB24 3FX

Zarfl et al., 2015. Aquatic Sciences.

Jackson et al., 2007. River Res & App.

- Spatial connectivity:
- Ability to travel from point A to point B

- Habitat Connectivity Index for Upstream passability (HCIU, McKay et al., 2013)
- Global index for connectivity and a measure for upstream available habitat

Research Questions

- How is upstream connectivity affected by hydropower constructions?
- How do hydropower constructions influence sustainability of salmonid habitat?
- Do we have tools for site selection to optimise hydropower generation and habitat maintenance?

Methods

- Theoretical study of a typical Scottish upland river
- Use GIS based classification scheme to understand connectivity

Reach classification (S. Addy, PhD thesis)

Impact of obstructions on river connectivity for different scenarios

Obstructions

Methods

Three impact scenarios versus natural situation:

- 1. One hydropower construction at outlet
- 2. One hydropower construction on main stem
- 3. 3 Hydropower constructions on tributaries

Apply a weighting factor for spawning habitat

Results

- Impact on connectivity depends on location
- In this situation multiple smaller hydropower constructions may potentially have a lower impact than a single larger hydropower construction Weighted for Spawning Habitat

ABERDE

Results

- There is a clear relationship between habitat and connectivity
- Losing less but more suitable habitat potentially has a disproportionally large impact

Further work

- No hydrological/hydraulic/biological data
- In-stream spatial distribution of habitat types may have different relationships with connectivity (Kim and Lapointe, 2011), as well as discharge
- Currently only small scale has been considered, trends may different at larger scales (Mahlum et al., 2014)
- Apply and ground-truth approach in the larger Lyon and Tay catchments

Summary and take-home messages

- Preliminary results show that, in the case of weighting for spawning habitat:
- 1. Location, number and size of hydropower construction(s) is important
- 2. Multiple small hydropower constructions could potentially have a lower impact than a single large construction
- There may be different implications for different habitat types
- A better understanding of impacts on connectivity can help to inform sustainable management of hydroschemes

Thanks

Questions?

Hydro Nation Scholarship Programme

www.abdn.ac.uk/nri bas.buddendorf@abdn.ac.uk 01224 27 3696

School of Geosciences University of Aberdeen Aberdeen, AB24 3FX