A Forest Optimization Model to Minimize the Risk of Hurricane Damage
 Eastern Nicaragua

Dr. Fernando J Mendoza Jara
National Agrarian University, Nicaragua University of Texas at Dallas

Introduction

- Nicaragua is highly vulnerable to natural disasters and is a the third most highly impacted country in the world in regards to the passage of tropical storms. Hurricanes are part of the life in eastern Nicaragua.
- North Atlantic has experienced a clear increase in the frequency of tropical storms and major hurricanes within the last three decades (Emanuel, K. 2005) .

Figure 2: World Map of the Global Climate Risk Index 1992-2011
Source: Germanwatch and Munich Re NatCatSERVICE

Research question

- Based on damages from historic hurricanes and modeled synthetic hurricanes, could we successfully propose a forest management plan in order to reduce the risks of impacts from future hurricanes?

Research objective

- To develop a forest optimization model that produces a land management plan that minimizes certain risks posed by hurricanes.

1. Generating synthetic future hurricanes
2. Damage model calibration using existing data from Hurricane Felix (2007) and develop a damage prediction model
3. Combine the damage prediction model with synthetic hurricanes to evaluate potential damages of future hurricanes.
4. Built a forest optimization model to mitigate the negative impact of future hurricanes

After Hurricane Felix

- Flight path around Felix's trajectory to evaluate forest damage: a systematic sample zigzagging along Felix's path.
- This sampling scheme did not control for land cover classes and, therefore, some classes over- or under-sampled.

After Hurricane Felix

Level of damage

Feasible areas

BBF - Dense Broadleaf Forest

OBL - Open Broadleaf and Mixed Forest

PIN - Pine

For prediction area:
Deterministic analysis to limit the feasible growth areas for each land cover class.

The subgroup soil map was overlayed with the terrain slope (\%) to determine feasible growth areas for each land cover class

Components of Windspeed along Trajectory

Synthetic hurricanes

Statically deterministic approach to hurricane risk assessment" article published on American Meteorological Society, and developed by Emanuel (2006), who is a professor of Atmospheric Science of Massachusetts Institute of Technology (MIT)

Genesis points Historical tracks Surface temperature Vertical shear of wind 6-h translation speed and direction

Damage model calibration

- Standard logistic regression has been used to model the level of damage within each landuse class (four main land cover classes)
- It is assume that wind speed, trajectory speed (duration) pressure, and precipitation (in), contribute to the level of damages.
- This approach is two steps process:

1. Estimate the Potential Damage: this is function solely based on the hurricane characteristics (distance from path and windspeed intensity on path)
2. Combine the Potential Damage with Terrain factors (slope, aspect, etc) to predict actual damage within each land cover class.

Damage Potential Factor

0.0	0.2	0.4	0.6	0.8	1.0

Damage-Potential Within Range Estimate b3 = 100

Damage model calibration - Results IV

Potential Damage (Wind speed ^ ${ }^{\wedge} \mathbf{. 5 7}$)

Potential Damage ((MaxDistPath / 110) ^ 2.2)

$$
\text { Pot }_{\text {Damage }}=\text { WindSpeed }^{0.57} \cdot \exp \left(-\left(\frac{\text { DistPath }}{110}\right)^{2.2}\right)
$$

Damage-Potential Within Range Estimate b3 = 110

Damage Prediction Model
 BBF - Dense Broadleaf Forest

\square Feasible growth area
FFW - Forest fallow
\square PredictedArea

Implementing DMC (predicted damage probabilities, 0-1) in the predicted area (Prinzapolka river watershed) for each landuse class, using the synthetic hurricane track number 099

Forest Optimization Model Objective function and constraints
Validation
Sensitivity analysis

Forest Optimization Model I

- A deterministic optimization method
- Spatial optimization problems in general consist of three components: an objective function with constraining conditions and decisions to be made.
- Constraints can be applied
- Throughout the study area (global constraints)
- Or on a pixel level (local constraints)

Forest Optimization Model II

- Objective function
- Minimize the impacts of hurricanes over the study area
- Damage prediction model that is dependent upon landuses and synthetics hurricanes tracks and intensities

$$
\min \sum_{h=1}^{H} \cdot \sum_{k=1}^{L} \cdot \sum_{i=1}^{r} \cdot \sum_{j=1}^{c} D_{i j k} * R_{i j k h}
$$

where:
$i \quad$ counter identifying the current row
j counter identifying the current column
$k \quad$ counter identifying the current landuse
H is the number of potential damage
$D_{i j k}$ is the binary decision variable
$R_{i j k h}$, represent the risk of hurricane damage

Forest Optimization Model III

- Constraints
- Just one landuse class has to be assigned to each management unit

$$
\sum_{k=1}^{L} D_{i j k}=1 \quad \forall_{k}
$$

- Adjacency constraint

$$
D_{i j k} \leq D_{i+1, j, k}+D_{i-1, j, k}+D_{i, j+1, k}+D_{i, j-1, k} \quad \forall_{i j k}
$$

- Minimum and maximum area constraints

$$
\begin{aligned}
& \sum_{i=1}^{r} \cdot \sum_{j=1}^{c} D_{i j k} \geq \min _{i j} \quad \forall_{k} \\
& \sum_{i=1}^{r} \cdot \sum_{j=1}^{c} D_{i j k} \leq \max _{i j} \quad \forall_{k}
\end{aligned}
$$

- Budget

$$
\sum_{k=1}^{L} C_{i j k}-M \leq 0 \quad \forall_{i j k}
$$

- Decision variable

$$
D_{i j} \in\{0,1\}
$$

Forest Optimization Model IV

Data Export Function in VB.NET: ArcToLingo_FOM


```
! This is the Objective Function of the FOM
MIN =
Hurricane 1
LU1_1_1 * 0.5 + LU2_1_1 * 0.3 + LU3_1_1 * 0.4 + LU4_1_1
LU1_1_2 * 0.4 + LU2_1_2 * 0.5 + LU3_1_2 * 0.3 + LU4_1_2
LU1_-2_1 * 0.4 + LU2_2_1 * 0.3 + LU4_2_1 * 0.8 +
LU1__2_2 * 0.1 + LU2_2_2 * 0.2 + LU3_2_2 * 0.8 +
Hurricane 2
LU1_1_1 * 0.8 + LU2_1_1 * 0.4 + LU3_1_1 * 0.8 + LU4_1_1 * 0.1
LU1_1_2 * 0.8 + LU2_1_2 * 0.6 + LUS_1_2* 0.3 + LU4_1_2 * 0.6 +
LU1_\mp@subsup{2}{}{2}1 * 0.3 + LU2_2_1 * 0.8 + LU4_2_1 * 0.6 +
LU1_2_2 * 0.4 + LU2_2_2 * 0.8 + LU3_2 2 * 0.8 +
' Binary constraint: Just one landuse class has to be assigned to each pixel
LU1_1_1 + LU2_1_1 + LU3_1_1 + LU4_1_1 = 1
LU1_1_2 + LU2_1_-2 + LUS__1_2 + LU4__1_2 = 1;
LU1_2_1 + LU2_2_1 + LU4_2_1 = 1;
LU1_2_2+ LU2_2_2+ LU3_2_2 = 1;
! The ADJACENCY constraint to limit the number of Neighbors pixels
LU1_1_1 <= LU1_2_1 + LU1_1_2;
LU1_1_2 <= LU1_2_2 + LU1_1_1 + LU1_1_3;
LU1_2_1 <= LU1_1_1 + LU1_3_1 + LU1_2_2;
!The @BIN function restricts a variable to being binary (i.e., 0 or 1)
@BIN(LU1_1_1);
@BIN(LU2_1_1);
29 @BIN(LU3 1 1)
30 @BIN(LU4___1);
```


Forest Optimization Model V

Results Importation Function in VB.NET: LingoToArc_FOM

吅	Lingo To Arc FOM	- ロ	\times
Lingo TXT Location			
Lingo Data Location:	C: \Geodatabase\FFilesOutput\LingofilesOut_A600\S600_05h_1.txt	Add File	
New Ascii File			
Clean bt Lingo Output File:	C:IGeodatabase		
FilesOutput/Ascii_Outputs \S600_05h_1.txt	Browse		
Temporal Raster Output File:	C: Temp\TempRaster Temp 101	Browse	
Raster Output File:		Browse	
		Run	
	Execution Time (s)		
Ready...			

Forest Optimization Model - Results

- The dimensionality of the problem increases proportionally to the number of hurricanes being evaluated
- Decision variables are binary, the result is a perfect branch and bound scenario where every single decision has two branches. These two branches are not only symmetric but also linear.
- Inflection point: limit of computer memory.

Forest Optimization Model - Results

- Validation: Adjacency

- Implementation of Adjacency Constraints is standard practice in the management of public and private forests
- Including adjacency constraints will remove the "salt-and-pepper" effect and will make the value of objective function less optimal.

Forest Optimization Model - Results

- Validation: Minimum and Maximum constraints

FFW
PIN
Maximum area constraint on OBL

- Defines a specific number of hectares that must be assigned to each land use.
- Three models:

1. No constraints
2. Minimum area constraints
3. Maximum area constraint

Forest Optimization Model - Results

- Validation: Budget 1

S600_05h_1

S600_05h_3

S600_05h_2

S600_05h_4

FOM implementing invariable minimum and maximum area and cost per hectare for each land use class					
Model Name	Min/Max Area	Cost / ha (\$)	Percentage results (\%)	Budget (\$ MM)	Objective function value $(e+9)$
S600_05h_1	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF 30.93 OBL 32.11 FFW 20.84 PIN 16.13	10	1.206027
S600_05h_2	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF 30.93 OBL 32.11 FFW 20.84 PIN 16.13	9	1.206027
S600_05h_3	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF 30.93 OBL 32.11 FFW 20.84 PIN 16.13	8.5	1.206027
S600_05h_4	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF 31.36 OBL 31.68 FFW 20.84 PIN 16.12	8	1.206346
S600_05h_5	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40		7	Infeasible

Forest Optimization Model - Results

- Validation: Budget 2

S600_05h_6

S600_05h_8

S600_05h_7

S600_05h_9

FOM implementing invariable minimum and maximum area and cost per hectare for each land use class					
Model Name	Min/Max Area	Cost / ha (\$)	Percentage results (\%)	$\begin{aligned} & \text { Budget } \\ & \text { (\$ MM) } \end{aligned}$	Objective function value (e+9)
S600_05h_6	Min BBF: 30 Min OBL: 30 Min FFW: 20 Min PIN: 10	BBF 1 OBL 5 FFW 100 PIN 120	BBF 10.1 OBL 78.12 FFW 6.72 PIN 5.06	5	1.249815
S600_05h_7	No minimum /maximum	BBF 1 OBL 5 FFW 100 PIN 120	BBF 0.50 OBL 89.21 FFW 0 PIN 10.28	5	1.21313
S600_05h_8	No minimum /maximum	BBF 20 OBL 25 FFW 30 PIN 40	BBF 78.89 OBL 7.27 FFW 0.00 PIN 15.84	7	1.239120
S600_05h_9	No minimum /maximum	BBF 1 OBL 5 FFW 100 PIN 120	BBF 0.29 OBL 77.7 FFW 5.88 PIN 16.12	10	1.17546

Forest Optimization Model - Results

- Pooling Synthetic Hurricanes together: Storm frequency and intensity

Landuse with five hurricanes

Change Detection between five and fourteen hurricanes

- Single hurricane, its output would reflect the spatial patterns seen in that hurricane's predicted potential damage map
- Increasing the number of hurricanes, the output would exhibit an increasingly diversified spatial structure.
- Five hurricanes: relatively simple pattern of land uses OBL in the central region and bands of the other three land uses to the north, south, east and west of this central region.
- Fourteen hurricanes the pattern is much less pronounced; the BBF landuse has encroached on many of the areas formally assigned to OBL

Forest Optimization Model - Results IX

- Sensitivity analysis:

Constraints	S600_05h_SA1				S600_05h_SA2				S600_05h_SA3			
Budget (\$)	9MM		10MM		9MM		10MM		9MM		10MM	
Cost per landuse	BBF	20										
	OBL	25	OBL	25	OBL	50	OBL	50	OBL	35	OBL	35
	FFW	30	FFW	30	FFW	60	FFW	60	FFW	45	FFW	45
	PIN	40	PIN	40	PIN	80	PIN	80	PIN	60	PIN	60

Min area (thousand/ha)	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10
Solution	Feasible Solution					
Objective Value (e+9)	1.18022	1.18022	1.285537	1.24553	1.220881	1.200808

Forest Optimization Model - Results XI

- Sensitivity analysis suggests that feasible solutions are strongly regulated by the interaction of four factors:

1. the feasible area assigned to each landuse,
2. the minimum and maximum area constraints for each landuse,
3. landuse implementation costs, and
4. the available budget.

- Adjusting these factors largely determines the feasibility of the model's results

Conclusions

1. A simple but efficient approach has been developed to model the potential damage of hurricanes in different tropical land cover classes.
Residual analysis helped uncover initial data problems

Forest Optimization Model.
2. The FOM is flexible. The use of feasible areas allows the model to take into account the environmental and geographic realities in the study region.
3. The inclusion of adjacency constraint in the FOM has the greatest impact on execution time of any of the components of the model. This factor is exponentially related to time required to solve the optimization model

Acknowledgment

This research was funded by
Innovative Application of ICTs in addressing Water-related Impacts of Climate Change (ICTWCC)
To strengthen the capacity of registered Masters and PhD students in universities in Latin America

IDRC CRDI

The author would like to appreciate the help of Dr. Kerry Emanuel, professor of Atmospheric Sciences of Massachusetts Institute of Technology, for providing the MatLab code and data to model Synthetics hurricanes.

Thank you!

