A Forest Optimization Model to Minimize the Risk of Hurricane Damage Eastern Nicaragua

Dr. Fernando J Mendoza Jara

National Agrarian University, Nicaragua University of Texas at Dallas

Introduction

- Nicaragua is *highly vulnerable to natural disasters* and is a the third most highly impacted country in the world in regards to the passage of tropical storms. Hurricanes are part of the life in eastern Nicaragua.
- North Atlantic has experienced a clear increase in the frequency of tropical storms and major hurricanes within the last three decades (Emanuel, K. 2005).

Source: Germanwatch and Munich Re NatCatSERVICE

Research question

 Based on damages from historic hurricanes and modeled synthetic hurricanes, could we successfully *propose a forest management plan* in order to *reduce the risks of impacts* from future hurricanes?

Research objective

 To develop a forest optimization model that produces a land management plan that minimizes certain risks posed by hurricanes.

After Hurricane Felix

- Flight path around Felix's trajectory to evaluate forest damage: a systematic sample zigzagging along Felix's path.
- This sampling scheme did not control for land cover classes and, therefore, some classes over- or under-sampled.

After Hurricane Felix

Level of damage

Feasible areas

BBF - Dense Broadleaf Forest

OBL - Open Broadleaf and Mixed Forest

PIN - Pine

FFW - Forest fallow

Basin Prinzapolka River Feasible growth areas

40%

For prediction area:

Deterministic analysis to limit the *feasible growth areas* for each land cover class.

The subgroup soil map was overlayed with the terrain slope (%) to determine feasible growth areas for each land cover class

Components of Windspeed along Trajectory

Synthetic hurricanes

Statically deterministic approach to hurricane risk assessment" article published on American Meteorological Society, and developed by Emanuel (2006), who is a professor of Atmospheric Science of Massachusetts Institute of Technology (MIT)

Genesis points Historical tracks Surface temperature Vertical shear of wind 6-h translation speed and direction

Damage model calibration

- Standard logistic regression has been used to model the level of damage within each landuse class (four main land cover classes)
- It is assume that wind speed, trajectory speed (duration) pressure, and precipitation (in), contribute to the level of damages.
- This approach is two steps process:
 - 1. Estimate the *Potential Damage*: this is function solely based on the hurricane characteristics (distance from path and windspeed intensity on path)
 - 2. Combine the Potential Damage with Terrain factors (slope, aspect, etc) to predict actual damage within each land cover class.

Damage model calibration

Components of the Potential Damage:

$$Pot_{Damage} = WindSpeed^{b_1} \cdot \exp\left(-\left(\frac{DistPath}{b_3}\right)^{b_2}\right)$$

Damage model calibration – Results IV

$$Pot_{Damage} = WindSpeed^{0.57} \cdot \exp\left(-\left(\frac{DistPath}{110}\right)^{2.2}\right)$$

Potential Damage (Wind speed ^0.57)

Distance from path (km)

Damage Prediction Model

BBF - Dense Broadleaf Forest

OBL - Open Broadleaf and Mixed Forest

Implementing DMC (predicted damage probabilities, 0-1) in the predicted area (Prinzapolka river watershed) for each landuse class, using the synthetic hurricane track number 099

Forest Optimization Model Objective function and constraints Validation Sensitivity analysis

Forest Optimization Model I

- A deterministic optimization method
- Spatial optimization problems in general consist of three components: an objective function with constraining conditions and decisions to be made.
- Constraints can be applied
 - o Throughout the study area (global constraints)
 - o Or on a pixel level (local constraints)

Forest Optimization Model II

- Objective function
 - o Minimize the impacts of hurricanes over the study area
 - Damage prediction model that is dependent upon landuses and synthetics hurricanes tracks and intensities

$$\min \sum_{h=1}^{H} \cdot \sum_{k=1}^{L} \cdot \sum_{i=1}^{r} \cdot \sum_{j=1}^{c} D_{ijk} * R_{ijkh}$$

where:

- *i* counter identifying the current row
- *j* counter identifying the current column
- k counter identifying the current landuse
- *H* is the number of potential damage
- D_{ijk} is the binary decision variable
- R_{ijkh} , represent the risk of hurricane damage

Forest Optimization Model III

- Constraints
 - o Just one landuse class has to be assigned to each management unit

$$\sum_{k=1}^{L} D_{ijk} = 1 \qquad \forall_k$$

o Adjacency constraint

$$D_{ijk} \le D_{i+1,j,k} + D_{i-1,j,k} + D_{i,j+1,k} + D_{i,j-1,k} \quad \forall_{ijk}$$

o Minimum and maximum area constraints

$$\sum_{i=1}^{r} \sum_{j=1}^{c} D_{ijk} \ge \min_{ij} \qquad \forall_{k}$$
$$\sum_{i=1}^{r} \sum_{j=1}^{c} D_{ijk} \le \max_{ij} \qquad \forall_{k}$$

o Budget

$$\sum_{k=1}^{L} C_{ijk} - M \le 0 \qquad \forall_{ijk}$$

o Decision variable

$$D_{ij} \in \{0,1\} \qquad \qquad \forall_{i,j}$$

Forest Optimization Model IV

Data Export Function in VB.NET: ArcToLingo_FOM

	Arc	GIS to Lingo Bin	nary Program	ming (FOM)	- 🗆 🗙	1	! This is the Objective Function of the FOM
Di Li r						2	MIN =
Data Location						3	Hurricane 1
Main Directory of Data Location	C:\Geodatabase	e\DataRunFOM\Area	a600\Area600_5h	Λ	Add Directory	4	LU1_1_1 * 0.5 + LU2_1_1 * 0.3 + LU3_1_1 * 0.4 + LU4_1_1
						5	LU1_1_2 * 0.4 + LU2_1_2 * 0.5 + LU3_1_2 * 0.3 + LU4_1_2
C:\Geodatabase\DataRu	FOM\Area600\Ar	C:\Geodatabase\Da	ataRunFOM\Area	600\Area600_5h\Hurcn09! A	1 m	6	LU1_2_1 * 0.4 + LU2_2_1 * 0.3 + LU4_2_1 * 0.8 +
C:\Geodatabase\DataHu	FOM\Area600\Ar	C:\Geodatabase\Da	staRunFOM\Area	600\Area600_5h\Hurch09:	Check For the Layers	7	LU1_2_2 * 0.1 + LU2_2_2 * 0.2 + LU3_2_2 * 0.8 +
C:\Geodatabase\DataRu	FOM\Area600\Ar	C:\Geodatabase\Da	ataRunFOM\Area	600\Area600_5h\Hurcn09!		8	
C:\Geodatabase\DataHu	-OM VArea 600 VAr	C:\Geodatabase\Da	staRunFOM\Area	600\Area600_5h\Hurch11(9	Hurricane 2
		C:\Geodatabase\Da	ataRunFOM\Area	600\Area600_5h\Hurcn11(Clear List Views	10	LU1 1 1 * 0.8 + LU2 1 1 * 0.4 + LU3 1 1 * 0.8 + LU4 1 1 * 0.1
		C:\Geodatabase\Da	staRunFOM\Area	600\Area600_5h\Hurch11(· · · · · · · · · · · · · · · · · · ·	11	LU1 1 2 * 0.8 + LU2 1 2 * 0.6 + LU3 1 2 * 0.3 + LU4 1 2 * 0.6 +
		C:\Geodatabase\Da	ataRunFOM\Area	600\Area600_5h\Hurcn12!		12	LU1 2 1 * 0.3 + LU2 2 1 * 0.8 + LU4 2 1 * 0.6 +
<	>	<	TABLINE IN AREA	SUU(Areabuu In (Hurch 12)		13	
						14	
Constraints						11	Pinner construint. That are londing along but to be period to each nime
Landuses Classes	Min Area (h	na) Max Area (ha)	\$/ha	Budget (\$)	Distance to Road	15	: Binary constraint: Just one landuse class has to be assigned to each pixe
Dense Broadleaf Forest (BF) 9200	0	20	9000000	Included in the Objective	10	$L01_1 + L02_1 + L03_1 + L03_1 - 1;$
Open Broadleaf - Mixed Forest (BL) 9200	0	25		function as previous step	1/	$LOI_1 + LO2_1 + LO3_1 + LO3_1 + LO4_1 = 1;$
Tacotal (Forest fallow) (FW) 6200	0	30	Adiacency	from SA in ArcMap	18	$L01 \ge 1 + L02 \ge 1 + L04 \ge 1 = 1;$
Pine Forest (IN) 3500	0	40	Adiaconar		19	$LU1_2_2 + LU2_2_2 + LU3_2_2 = 1;$
Mangrove (ING)					20	
Shrubland - Wetlands (WD					21	! The ADJACENCY constraint to limit the number of Neighbors pixels
						22	LU1_1_1 <= LU1_2_1 + LU1_1_2;
Objective Function						23	LU1_1_2 <= LU1_2_2 + LU1_1_1 + LU1_1_3;
Objective Function Output File:	:\Geodatabase\Fil	esOutput\ArcToLinga	Files A600\SA	Budget\ObiFuncbt	Browse	24	LU1_2_1 <= LU1_1_1 + LU1_3_1 + LU1_2_2;
						25	
					P.=	26	The @BIN function restricts a variable to being binary (i.e., 0 or 1)
					Nun	27	(BIN(LU1 1 1);
	Executio	on Time (s)				28	@BIN(LU2 1 1);
		1216				29	(BIN(LU3 1 1);

Forest Optimization Model V

Results Importation Function in VB.NET: LingoToArc_FOM

1	Global optimal solution for	ound.				
2	Objective value:		5.200000		🖳 Lingo To Arc FOM	- • ×
3	Elapsed runtime seconds:		0.05		Lingo TXT Location	
4	Model Class:		PILP		Lingo Data Location: C:\Geodatabase\FilesOutput\LingoFilesOut A600\S600 05h 1.bt Add F	ile
5						
6	Total variables:	48			New Ascii File	
7	Total constraints:	10			Clean bt Lingo Output File: C:\Geodatabase\FilesOutput\Ascii Outputs\S600 05h 1.bt Brow	se
8	Nonlinear constraints:	0				
9		Variable	Value	Reduced Cost	Temporal Raster Output File: C:\Temp\TempRaster\Temp101 Brow	se
10		LU1_1_1	0.000000	1.400000	Raster Output File: C:\Geodatabase\FilesOutput\RastersOut\Raster2\S600_05h_1 Brow	se
11		LU2_1_1	0.000000	0.700000		
12		LU3_1_1	0.000000	1.200000		
13		LU4_1_1	0.000000	0.700000		
14		LU5_1_1	1.000000	0.500000	R	un 🛛
15		LU1_1_2	0.000000	1.300000	Execution Time (s)	
16		102_1_2	0.000000	1.200000		
17	FFW to 1-2	LU3_1_2	1.000000	0.600000	Ready	
18		LU4_1_2	0.000000	1.100000		
19		LU6_1_2	0.000000	1.000000		
20		LU1_1_3	0.000000	1.500000		
21		LU3_1_3	1.000000	0.700000		
22		LU4 1 3	0.000000	1.000000		

System Performance

Number of Pixels (Dimension)

- The dimensionality of the problem increases proportionally to the number of hurricanes being evaluated
- Decision variables are binary, the result is a perfect branch and bound scenario where every single decision has two branches. These two branches are not only symmetric but also linear.
- Inflection point: limit of computer memory.

Validation: Adjacency

- Implementation of Adjacency Constraints is standard practice in the management of public and private forests
- Including adjacency constraints will remove the "salt-and-pepper" effect and will make the value of objective function less optimal.

Validation: Minimum and Maximum constraints

BBF OBL FFW

- Defines a specific number of hectares that must be assigned to each land use.
- Three models:
 - 1. No constraints
 - 2. Minimum area constraints
 - 3. Maximum area constraint

Validation: Budget 1

S600_05h_4

for each land use class									
Model Name	Min/Max Area	Cost / ha (\$)	Percentage results (%)	Budget (\$ MM)	Objective function value (e+9)				
S600_05h_1	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF 30.93 OBL 32.11 FFW 20.84 PIN 16.13	10	1.206027				
S600_05h_2	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF30.93OBL32.11FFW20.84PIN16.13	9	1.206027				
S600_05h_3	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF30.93OBL32.11FFW20.84PIN16.13	8.5	1.206027				
S600_05h_4	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40	BBF31.36OBL31.68FFW20.84PIN16.12	8	1.206346				
S600_05h_5	Min BBF: 92 Min OBL: 92 Min FFW: 62 Min PIN: 35	BBF 20 OBL 25 FFW 30 PIN 40		7	Infeasible				

FOM implementing invariable minimum and maximum area and cost nor bestar

FOM image

Validation: Budget 2

S600_05h_8

S600_05h_9

for each land use class										
Model Name	Min/Max Area	Cost / h (\$)	na	Percentage results (%)		Budget (\$ MM)	Objective function value (e+9)			
S600_05h_6	Min BBF: 30 Min OBL: 30 Min FFW: 20 Min PIN: 10	BBF OBL FFW 10 PIN 12	1 5 00 20	BBF OBL FFW PIN	10.1 78.12 6.72 5.06	5	1.249815			
S600_05h_7	No minimum /maximum	BBF OBL FFW 10 PIN 12	1 5 00 20	BBF OBL FFW PIN	0.50 89.21 / 0 10.28	5	1.21313			
S600_05h_8	No minimum /maximum	BBF 2 OBL 2 FFW 3 PIN 4	20 25 30 40	BBF OBL FFW PIN	78.89 7.27 0.00 15.84	7	1.239120			
S600_05h_9	No minimum /maximum	BBF OBL FFW 10 PIN 12	1 5 00 20	BBF OBL FFW PIN	0.29 77.7 5.88 16.12	10	1.17546			

in a single extension and an extension and a set on the set

Pooling Synthetic Hurricanes together: Storm frequency and intensity

Landuse with fourteen hurricanes

Change Detection between five and fourteen hurricanes

- Single hurricane, its output would reflect the spatial patterns seen in that hurricane's predicted potential damage map
- Increasing the number of hurricanes, the output would exhibit an increasingly diversified spatial structure.
- Five hurricanes: relatively simple pattern of land uses OBL in the central region and bands of the other three land uses to the north, south, east and west of this central region.
- Fourteen hurricanes the pattern is much less pronounced; the BBF landuse has encroached on many of the areas formally assigned to OBL

Sensitivity analysis:

Constraints	S600_0	5h_SA1	S600_0	5h_SA2	S600_05h_SA3		
Budget (\$)	9MM	10MM	9MM	10MM	9MM	10MM	
Cost per landuse	BBF 20 OBL 25 FFW 30 PIN 40	BBF 20 OBL 25 FFW 30 PIN 40	BBF 20 OBL 50 FFW 60 PIN 80	BBF 20 OBL 50 FFW 60 PIN 80	BBF 20 OBL 35 FFW 45 PIN 60	BBF 20 OBL 35 FFW 45 PIN 60	
Min area (thousand/ha)	BBF 92 OBL 92 FFW 62 PIN 35						
Solution	Feasible Solution	Feasible Solution	Infeasible Solution	Infeasible Solution	Infeasible Solution	Infeasible Solution	
Objective Value (e+9) 1.206027		1.206027					

					* · ·	
Min area (thousand/ha)	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10	BBF 30 OBL 30 FFW 20 PIN 10
Solution	Feasible Solution	Feasible Solution	Feasible Solution	Feasible Solution	Feasible Solution	Feasible Solution
Objective Value (e+9)	1.18022	1.18022	1.285537	1.24553	1.220881	1.200808

- Sensitivity analysis suggests that feasible solutions are strongly regulated by the interaction of four factors:
 - 1. the feasible area assigned to each landuse,
 - 2. the minimum and maximum area constraints for each landuse,
 - 3. landuse implementation costs, and
 - 4. the available budget.
- Adjusting these factors largely determines the feasibility of the model's results

Conclusions

 A simple but efficient approach has been developed to model the potential damage of hurricanes in different tropical land cover classes. Residual analysis helped uncover initial data problems

Forest Optimization Model.

- 2. The FOM is flexible. The use of feasible areas allows the model to take into account the environmental and geographic realities in the study region.
- 3. The inclusion of adjacency constraint in the FOM has the greatest impact on execution time of any of the components of the model. This factor is exponentially related to time required to solve the optimization model

Acknowledgment

This research was funded by

Innovative Application of ICTs in addressing Water-related Impacts of Climate Change (ICTWCC)

To strengthen the capacity of registered Masters and PhD students in universities in Latin America

The author would like to appreciate the help of **Dr. Kerry Emanuel**, professor of Atmospheric Sciences of Massachusetts Institute of Technology, for providing the MatLab code and data to model Synthetics hurricanes.

