IWRA World Water Congress XV Edinburgh, Scotland. 25<sup>th</sup> to 29<sup>th</sup> May2015

Geoinformatics in water resource management at Micro watershed level; Dangra a Case, West Bengal Presented by Kartic Bera In Collaboration with: Dr. Jatisankar Bandyoapadhyay **Department of Remote Sensing & GIS** Vidyasagar University, Midnapore, West Bengal :: India

# Content

- **1. Introduction**
- 2. Location of Study area
- 3. Micro-Watershed Codification
- 4. Aim & Objectives
- 5. Materials used for Study
- 6. Integrated Watershed Development
  - **Physiographic & Societal parameters**
- 7. Multi Criteria Evaluation
- 8. Management
  - Water Resources
- Conclusion
- References

#### Introduction

Water are the greatest gift of nature. This resources must be conserved and maintained carefully for environmental protection and ecological balance. Land degradation reduces the world's fresh water reserves, river flow rates and lower ground water levels which lead to the silting up of estuaries, reservoirs, salt water intrusion, interfere with the operation of reservoirs and irrigation channels, increase coastal erosion and pollution of water by suspended particles and stalinization, thus affecting human and animal health. Solution to all these problems is watershed management.

Water resources development needs very careful analysis of the upper catchments to the lower stretch of a watershed otherwise scattered local level surface/ ground water management in the upstream is likely to affect negatively the recharge in the downstream of a river.

Multi dataset is required for micro watershed wise water resources management. Simulate of water scarcity zones, drainage character, surface runoff and sediment transport during rainfall events and evaluate the land capabilities and suitability's of it for multi criteria evaluation based final action plan tacking. It is essential to identify areas most susceptible to demographic stretcher for best management practices on these areas and assessment of BMP implementation effectiveness on water amiability improvement through monitoring strategies.



#### **Study Area Micro watershed Codification**

|             | Watershed codification |
|-------------|------------------------|
|             | REGION $-2A2C8C1a$     |
| AIS & LUS   | BASIN                  |
| SLUSI       | CATCHMENT              |
|             | SUB-CATCHMENT          |
|             | WATERSHED              |
| NRSC (IMSD) | SUB-WATERSHED          |
| Proposed    | MINI WATERSHED         |
|             | MICRO WATERSHED        |

| Sub                       | Mini watershed | Micro watershed   |        |  |
|---------------------------|----------------|-------------------|--------|--|
| watershed                 |                | Code              | Number |  |
| <b>Dangra</b><br>(2A2C8C) | 2A2C8C1        | 2A2C8C1a2A2C8C1f  | 6      |  |
|                           | 2A2C8C2        | 2A2C8C2a2A2C8C2d  | 4      |  |
|                           | 2A2C8C3        | 2A2C8C3a2A2C8C3c  | 3      |  |
|                           | 2A2C8C4        | 2A2C8C4a2A2C8C4d  | 4      |  |
|                           | 2A2C8C5        | 2A2C8C5a 2A2C8C5d | 4      |  |
|                           | 2A2C8C6        | 2A2C8C6a2A2C8C6d  | 4      |  |
|                           | 2A2C8C7        | 2A2C8C7a2A2C8C7d  | 4      |  |

## **Aim & Objectives**

**Aim:** Micro watershed wise Water Resource Management for sustainable development.

**Objectives:** 

> To prepare drainage net work map.

>To delineate and coded micro-watershed boundary.

>To prepare various thematic map.

>Different physiographic parameter based prioritization.

>Societal perspective based prioritization.

>Micro watershed wise action plan taking for sustainable development.

#### INTEGRATED WATERSHED DEVELOPMENT

#### **OBJECTIVES**

Economic Growth, Basic Needs, Ecological Balance

INFORMATION NEED



### **Materials used for Study**

| TYPE OF DATA                                               | YEAR OF PUBLISED                                                                                        | SOURCE                                       |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>IRS-P6, LISS-III</b><br>Spatial Resolution =23.5 Meter. | Swath=114 KM.<br>Row & Path = 55 & 107<br>Year: 2007, 2008, 2009, 2010,<br>2011 (Kharif & Rabi Session) | NRSC- Hydrabad                               |
| ASTER & SRTM DEM<br>(30 & 90 Meter )                       | 2000 (Path & Row-54/08).                                                                                | GLCF Website                                 |
| Geology (Resource Map)                                     | 2001                                                                                                    | GSI, Kolkata                                 |
| District Planning Map ( <b>DPMS</b> )                      | 1991(Bankua) & 1993 (Puruliya)                                                                          | NATMO & SOI Kolkata                          |
| Landform                                                   | 1999                                                                                                    | NATMO (Bankura), Kolkata                     |
| Toposheets                                                 | 1972 (First Edition)<br>(73I/11,14, 15 & 16)                                                            | Survey of India (Kolkata)                    |
| Sub-Surface / Ground water                                 | 3 <sup>rd</sup> & 4 <sup>th</sup> EMI Report                                                            | SWID, Kolkata                                |
| Meteorological Data                                        | 1993 to 2011                                                                                            | Indian Meteorological<br>Department, Kolkata |
| Village Boundary map                                       | 1961, 1971, 1981, 1991, 2001                                                                            | Census Department,                           |
| And Census data                                            | & 2011                                                                                                  | Kolkata                                      |
| Soil Data                                                  | 1991                                                                                                    | NBSS & LUP, Kolkata                          |
| Socio economic data<br>and Soil Sample                     | 2010 to 2013                                                                                            | Repetitive field survey.                     |

## **Methodology of Study**



Flow chart of the work

### Conclusion

>Special Information technology has emerged as a powerful techniques for cost effective data acquisition within a short time at periodic intervals.

>Evaluation of watersheds after the treatments is necessary to find the effect of conservation practices and further planning to control runoff and sediment yield.

>Most of the villages are in serious condition in dry seasons as do not they have the minimum quantity of water. So assigned high priority for taking immediate action.

#### Conti...

- ➢Due to low availability of water they cannot cultivate therefore economically backward.
- The sole factor in the success of any water harvesting system is the proper selection of the site, type of structures as per the physiography of the area and the methods to be used.
- ➢ Nano -watershed wise future study is necessary for local level implementation if micro watershed not covered.

#### References

Bera Kartic (2013): Geoinformatics in Water scarcity Management by suggest Nala band & Reservoir: Part of Dwarkeswar watershed, West Bengal, India, International Journal of Research in Social Sciences, 3 (1), pp 656-670.

Bera and Bandyopadhyay (2013), Management of Ground Water Using Geoinformatics in Dwarkeswar Watershed of Puruliya District, Indian Cartographer, Vol. 31, pp 265-270.

Bera and Bandyopadhyay (2013), Prioritization of Watershed using Morphometric Analysis through Geoinformatics technology: A case study of Dungra subwatershed, West Bengal, India, Int. Jor. of Advances in Remote Sensing and GIS, 2(1), pp 1-8.

Krishna Murthy Y. V. N. (2013), REMOTE SENSING & GIS APPLICATIONS IN WATERSHED MANAGEMENT, Lecture ppd published in ISRO website on 5<sup>th</sup> February 2013. <u>http://www.iirs.gov.in/iirs/sites/default/files/pdf/Watershed\_Director\_IIRS.pdf</u>

## THANK YOU FOR YOUR KIND ATTENTION

# SUGGESTION FOR DEVELOP MY STUDY

4kbrsgis@gmail.com