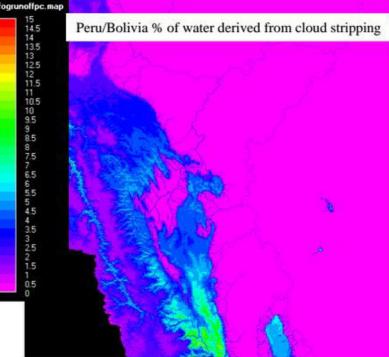

Policy support systems in the development of benefit-sharing mechanisms for water-related ecosystem services


Mark Mulligan, King's College London Silvia Benitez, Juan Sebastian Lozano & Jorge Leon The Nature Conservancy mark.mulligan@kcl.ac.uk @markmulligan www.policysupport.org

Environmental vs ecosystem services

- Environmental services a function of broader environment (including climate and terrain) and thus not manageable at the local and regional scale of interventions
- Ecosystem services a service provided by the ecosystem on the ground (vegetation, soil, wetlands) and can thus be managed for positive and negative outcomes
- eg cloud forests are wet environments (high precip, low evap. because of cloud) much of the water they produce is thus an environmental service
- Cloudwater (fog) inputs are an ecosystem service as they are dependent on trapping by forest. No forest, no trapping.

Hydrological ecosystem services

- Provisioning of water quantity and quality
- Regulating of flow peaks and troughs (floods and droughts)
- Role in some hazards and hazard mitigation
- Other cultural, spiritual and recreational
- Water supports other services eg plant production
- Oversimplifications: forests generate more water, forests prevent floods, forests sustain dry season flows,forests improve water quality
- Depends on landscape and climate, type of forest, relative to what land use, distribution of beneficiaries. The geography is key.

Managing ecosystem services

- Hydrological ecosystem services largely dependent on climate
- Land cover and land use (LCLU) can have an impact:
 - land cover effects on ET and fog inputs
 - land cover and management effects on infiltration and thus runoff/subsurface flow
 - land management effects on water quality
- Impacts depends on extent, intensity and geographical distribution of LCLU change in relation to varying soil, climate, geology...
- Individual actions combine to produce impacts downstream
- BSM provide incentive to reduce negative downstream impacts

Site-scale, water-relevant tools for mapping and modelling ecosystem services

- ARIES data-based surface and subsurface water calculations. Bayesian.
- **INVEST** simple annual water balance model, tradeoffs with many other ES, valuation. **RIOS** investment optimisation

integrated valuation of ecosystem services and tradeoffs

WaterWorld

- WEAP water allocation/distribution model with simple water balance
- **SWAT** sophisticated process model, detailed parameterisation required.
- WATERWORLD sophisticated, process based model of surface and subsurface stores and flows including snow and ice, fog. Climate, land use and land management scenarios. All data supplied for application globally.

Tools & metrics - are like toothbrushes!

Everybody wants one but nobody wants to use anyone else's!

| ecoengine for: waterworld v.2 [.92dev] [non-commercial use] | Disclaimer | Help | | Disk:u:9 | d:249 GB | Mem:07 % | Load:50% |

| run: estonia 🔍 » alternative: baseline » database: baseline » parameter set: default |

Welcome: (scientist) mark.mulligan

Control panel

et-up:
Step 2: Prepare data
imulation:
Step 3: Start simulation Step 4: Policy exercises
Manage simulations
esults: Step 5: Results: maps Step 6: Results: stats Step 7: Results: narrative
5150%
lelp: System documentation FAQ Change log Model documentation

waterworld was developed with the //ecoengine: framework

WaterWorld on a slide

- Detailed, process based, since 1998
- Spatial (1ha or 1km spatial resolution)
- All required data supplied for anywhere globally
- Fast (full analysis in 30 minutes)
- Uncertainty and validation tools
- Sophisticated scenarios and intervention tools
- Simple to use (web-based, firefox or chrome)
- Results downloadable in GIS formats

LAND AND WATER MANAGEMENT: choose the policy option that you wish to apply

Riparian buffer strips: +

Plant trees close to rivers to reduce soil erosion and contamination

Bench terracing: +

g across the slope at vertical intervals, supported by steep banks or risers to

Fanya juu on hillslopes: +

uphill to encourage infil and reduce erosion. The steeper the slope, the close

Eco-efficient agriculture: +

rming techniques to reduce inputs of pesticides, fertilisers and other potential

Reduce industrial and urban contaminant emissions: +

e industrial, extractive, infrastructure and urban supply of potential pollutants

Reduce domestic water use. +

withdrawals for domestic water use to reduce water stress and preserve wate

Install/upgrade urban sanitation capacity: +

urban sanitation capacity to reduce the pollution load of water entering water of

Install/upgrade livestock waste management capacity: +

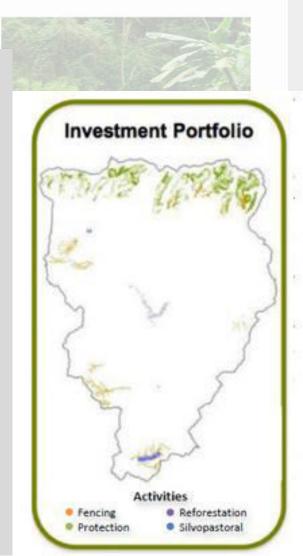
estock waste management to reduce the pollution load of water entering wate

Install water treatment capacity: +

Install water treatment capacity to clean water for consumption. Current:

RIOS

resource investment optimization system


Resource Investment Optimization System

RIOS is a free and open source software tool that supports the design of cost-effective investments

OUR WORK

RIOS on a slide

- Prioritises areas for investment portfolio based on a set of ES objectives in order to obtain the highest return on investment
- Uses input layers on any relevant biophysical, socioeconomic or other properties
- Produces maps of where each investment should be prioritised up to a specific budget
- These maps can be used for scenario testing in ES tools eg INVEST, WaterWorld

Too

Questions News Learn More Contact

Download

Download RIOS User's Guide (English User's Guide (Spanis OLD VERSION)

RIOS Brochure

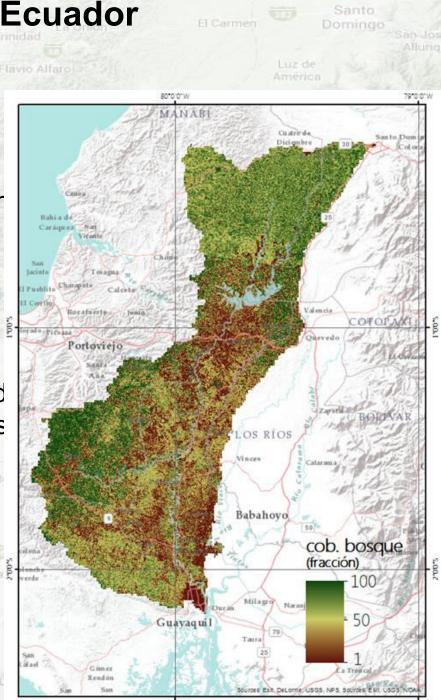
Learn more about RIOS Download the Brochure

The Latin American Water Funds

 BSMs in which water users such as hydropower, municipal water and industry provide funds to be invested in ES management upstream of their water intakes Need to know: what to invest in where to invest ... for maximum water **ES** benefits return

DOOQLE MIDDS Imagery 02014, DigitalGlobe, USDA Farm Service Age

The Guayaquil Water Fund: Ecuador (operating June 2015)

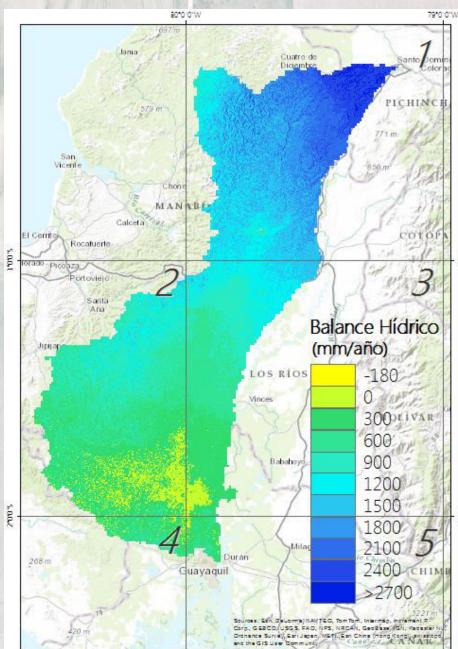

Geography:

- Daule basin flows to Guayaquil, Ecuador's second city
- Montane areas and Pacific coastal plair
- 19-630 masl, 1300-2900 mm/yr, 26 to 23°C
- For chapter: area upstream of Peripa reservoir only

Context:

Significant and continuing deforestation and agriculturalisation of lowlands and hillslopes **Key water Issues:**

- Soil erosion on deforested hillslopes
- Navigation problems because of Daule river sedimentation
- Poor water quality at water intakes



2010/01

Assessment strategy

- Run WaterWorld hydrological baseline
- Decide on **ES intervention types**:
 - Business as usual (no intervention) (BAU) (7% land)
 - Forest protection on steep, wet slopes (PROT) (33% land)
 - Eco-efficient agriculture in steep, wet slopes (33% land)
 - Rural sanitation (9.8% land)
- Apply interventions
- Examine impacts on key ES over whole basin and spatially:
 - areas improving
 - areas degrading
 - people with improved services

people with reduced services
 Use RIOS to assign priority [not shown]

80*010"W

Hydrological baseline and BAU

Baseline (now):

- 27% forest cover, 24% cropland
- Water balance: 210-3300 mm/yr, mean=1900
- Water quality: average 40% human footprint **BAU deforestation to 2050**:
- to 20% forest cover (-7%), to 31% cropland (+7%)
 Impacts:
- Gross erosion: 19% of basin with mean +0.14mm/yr (+270%). +50% over entire basin.
- Sediment deposition: +3% over 62% of main channel but decreases in deforested areas (more runoff)

Protecting steep, wet slopes

- BAU to 2050 but with protection for steep (>5°), wet (>1500mm/yr) slopes, 33% of catchment
- Forest cover to 24% (cf 20). Cropland to to 29% (cf 31)
- Much less deforestation than BAU in steep, wet parts **Impacts**:
- Gross erosion: +29% increase over basin (cf +50%)
- Sediment deposition: +3% over 64% of main channel (cf +3% over 62%) i.e. PROT leads to > sedimentation! Seems counter-intuitive but because DEF leads to increases in erosion AND in runoff (and thus transport capacity). Protecting the steep, wet slopes reduces runoff and increases deposition!

Eco-efficient agriculture and rural sanitation

Eco-efficient agric. on steep, wet slopes

- Recognising that BAU agriculturalization is a powerful force for change, reduce human footprint for all agricultural land by 50%, reflecting investment on eco-efficient techniques.
 Impacts: Human footprint (HF): -23% over 28% of basin (-6.5% basin mean). -17% decrease in number of people exposed to poor quality water. HF at reservoir -7%.
- **Rural sanitation**
- Treat 100% of effluent for all non-urban areas (urban already treated) in which pop/km²>100. Sanitation area 0.19% to 6.2%.

Impacts: No change in HF over 90% of basin. -2.3% over 9.8% of basin (-0.2 mean for basin) but decreases the number of people exposed to poor quality water by 35%. HF at reservoir - 0.35%

Key messages for policy makers and practitioners

- Environments are geographically heterogeneous and hydrological feedbacks are complex: interventions may have the opposite effects to that anticipated!
- Some interventions improve ES in parts of the catchment while degrading them on others
- Some interventions affect more land, other affect more people!
- Tools are available for ES baseline and scenario assessment (*e.g.* WaterWorld). You can run these and other interventions for your own basin at www.policysupport.org
- These can be coupled with tools for the optimisation of investments, spatially and across multiple objectives (*e.g.* RIOS)
- There remain a number of challenges in reducing data and model uncertainties

www.policysupport.org

Thank you

A ...

©2008 David C. Pearson, M.D.