Assessing future flood risks and opportunities for adaptation in the UK

(being undertaken as part of the UK Climate Change Risk Assessment: 2017)

Presentation by Paul Sayers

27 May 2015

Collaborators

- Matt Horritt
- Andy McKenzie (BGS British Geological Survey)
- Edmund Penning-Rowsell (FHRC, Middlesex Uni)
- Rainfall advice: Chirs Kilsby (Newcastle)

• Client leads

- Dave Thompson/Kathryn Humphreys (Climate Change Committee)
- Representatives from Scottish Environmental Protection Agency, Environment Agency, Rivers Agency NI, Natural Resources Wales

- Objectives of the Climate Change Risk Assessment (CCRA)
- Approach to assessing future flood risk
 - Flood types of interest
 - Future changes of interest
 - Adaptation levers and scenarios
 - The Future Flood Explorer
- Concluding remarks

Objectives of the CCRA

Under the **UK Climate Change Act**

- The Climate Change Committee must undertaken a Climate Change Risk Assessment (the CCRA) every 5 years and inform Government's policy programme to address those risks
- The **Adaptation Sub-Committee** advises on this assessment and scrutinises the implementation of the policy programme
- The first CCRA was completed in 2012 building upon the Foresight Future Flooding studies in 2004, national assessment of flooding under climate change in 1998.
- The second CCRA is due for publication 2017 (the flood risk component of this is the subject this talk)

Approach to assessing future flood risk at a UK scale

All sources of flood risk across the UK, including:

- Coastal
- Fluvial
- Surface water
- Groundwater
 - Permeable Superficial Deposits
 - Clearwater (Chalk and other aquifers)

Future changes of interest

- **Population: Low** and **high** scenarios of population growth with a single household occupancy).
- Climate change: Three changes 2,4°C change in Global Mean Temperature by the 2080s from the 1990s baseline. A non GMT related H++ change too

Core scenarios		Change in Global Mean Temperature		H++
		2 degrees	4 degrees	
Socio-economic change	Low	L2	L4	
	High	H2	H4	H++

Climate change uplifts: Example of Intense rainfall, UK (all return periods) SAYER

Climate change factor	Global Temperature Increase	2020 s	2050s	2080 s
Lower	2°C	+0%	+5%	+10%
Medium	4°C	+5%	+10%	+25%
H++/WPD	n/a – notional 6°C	+17%	+35%	+70%

- Based on UKWIR results (sub 6 hours rainfall)
- Translated into change in Return Period run-off using generalised runoff approaches
- Similar across different areas of the UK for groundwater flood frequency, fluvial flows and sea levels

Population changes – Low and High

	2025	2055	2085
Low	+7%	+16%	+20%
High	+10%	+30%	+53%

- Maximise value from existing knowledge:
 - UK has locally checked data held in national accessible databases (on river networks, defences, river levels etc, flood inundation) – Both for present day and some future climates.
- An approach that is both credible and capable of exploring many futures at a UK scale
 - Available information is used to create an emulator of the UK flood risk system (the FFE)
 - No spatial analysis is run real time (the FFE works purely from impact tables) it is quick (almost instant to run)

- Flood probability (defended, undefended and probabilistic analysis)
- Flood defence assets (standards, condition, type)

Receptor data:

- Property (residential and non-residential)
- People
- Agriculture (Best and Most Versatile and Not)
- Infrastructure (a range of critical infrastructures)
- Natural capital (SPA and SACs)

 Note: Erosion and opportunity gains not explored

New primary flood analysis - Groundwater

Two aspects:

- Attribution of groundwater \succ flooding extended to distinguish between limestone and chalk flo and flooding in other lithologies.
- Groundwater flood susceptibility has been extended to cover Nort Ireland.

Building the impact curves

Fluvial impact curves – with defences

- Changes in loading conditions (either due to climate change or active management):
 - % increase in river flows, run-off
 - Metres rise in mean sea levels
- Changes in defence performance/protection:
 - Representative Standard and Condition Grade
- Changes in exposure
 - Number of properties and occupancy
- Changes vulnerability
 - The damage incurred if a receptor is flooded

Some provisional NI results (no adaptation)

Expected Annual	Present	2º 2080s	4º 2080s	H++ 2080s
Residential properties flooded	540	1 100	1 700	9 500
Non-residential properties flooded	130	300	520	3 100
Damages (direct)	£13m	£32m	£58m	£190m
People affected	1 300	2 600	4 100	23 000

- ~30s to calculate
- Subject to change (unchecked)

a) Identify adaptation levers

- Standalone activities that influence either probability, exposure or vulnerability
- b) Quantify the potential impact an adaptation lever may have assuming:
 - > A continuation of current levels of adaptation (CLA).
 - A low(er) level of adaptation.
 - A high(er) level of adaptation.
- c) Put together the Adaptation Levers to develop alternative adaptation scenarios

Individual adaptation levers

- Adaptation influencing the probability of flooding:
 - River and coastal defences
 - Working with natural processes through:
 - Coastal realignment
 - Rural land management (run-off and storage)
 - Urban land management (run-off and storage)
- Adaptation influencing the receptors exposed to flooding (exposure)
 - Spatial planning
- Adaptation influencing he vulnerability of those exposed.
 - Receptor level protection measures
 - Forecasting and warning
 - Insurance and experience

From levers to adaptation scenarios

Some concluding remarks

• FFE maximizes value from existing information

to provide a step change in the credibility and speed for UK wide analysis

The fast run time enables:

- Many futures (climate, population and adaptations) to be explored and multiple risks estimated.
- Individual drivers and sensitivities to be explored

• Next steps

Will be applied in the coming months

More questions....please contact

Paul Sayers

- Sayers LLP, Fellow, University of Oxford, Associate WWF
- Paul.sayers@sayersandpartners.co.uk
- Skype: floodsman
- Telephone: 01865 600039