

Managed Aquifer Recharge in the UAE

Mohamed Mostafa Mohamed

Civil and Environmental Engineering Department United Arab Emirates University

World Water Congress XV

International Water Resources Association (IWRA) Edinburgh, Scotland. 25 - 29 May 2015

Water Resources in UAE

- UAE occupies an area of about 85,000 km²
- Water demand is 26 times renewable resources
- The Emirate has an arid climate with less than 100 mm/yr average rainfall, a very high evaporation rate (2-3m/yr).

- Low groundwater recharge rate and no reliable surface water resources
- Groundwater is the only conventional source with about 80% share.

Precipitation (P) & Evapotranspiration (ET)

Water Scarcity and Stress

Compounded By Population Growth & Infrastructure Needs (Through 2020) Water Abundant Water Concerns Water Stressed Water Scame Vater Crisis

Sparsely Populated

The UAE is listed by the United Nations as a high-rank country when it comes to water stress, a situation which occurs when the availability of water is not in balance with the demand for water

Water Resources in AD

- In 2013, the water demand was estimated as 5,400 MCM with annual growth of about 10%
 70 % Croundwater
 - 79 % Groundwater
 - 17 % Desalination
 - 4 % Treated Sewage

Water Source	Water using sector and water use (Mcm/year)								
2007	Agriculture	Forests	Amenity	People	Livestock	Industry	Lost	Total	
Groundwater	1413	579	51		20			1,816	
Desalination	76		91	366	183	46	94	856	
TSE	130						51	182	
Faljs			25					25	
Total	1489	709	167	366	203	46	145	3125	
Source: ICBA based on EAD, ADWEA and USGS data and information									

Groundwater Levels (before 2003)

Groundwater Use

- 641km³ groundwater resources available in AD, mostly non-renewable, less than 3% is fresh
- Based on current abstraction rates, both fresh and brackish reserves will be depleted within 50 years
- Abu Dhabi groundwater intake has been decreasing at annual rate of 6%.

UAE Desalination Capacity

Water Distribution System in Eastern AD The water desalination plants are the only

source of drinking water

• The water is delivered by TRANSCO from:

- Taweelah through twin 1,200 mm diameter pipelines, with boosting provided at pumping stations at Ajban and Sweihan;
- Abu Dhabi through a 1,000 mm diameter pipeline boosted at the Shobaisi and Remah pumping stations; and

• Fujairah via twin 1,600 mm diameter pipelines

•3,900 km of pipelines, from 80 mm to 800 mm diameter

•8 pumping stations

The average supply to Alain 293 MCM per year

Desalination Production in AD

Storage capacity for emergency water in GCC countries

Water Consumption in Abu Dhabi Emirate

Bulk per capita water consumption in Abu Dhabi Emirate and some developed countries (data for developed countries were adopted from Conference Board of Canada (2008)).

Water Consumption in Abu Dhabi Emirate

Domestic per capita water consumption in selected countries (EAD, 2007)

Water Use in Eastern UAE

Treated sewerage effluent discharge

 \sim 55 Mm³/year of sewage water generated annually in AlAin

~200 Mm³/year of sewage water generated annually in Dubai

~200 Mm³/year of sewage water generated annually in Abu Dhabi

Enhance National Strategic Groundwater Reserves via Managed Aquifer Recharge with Recycled Water

Storage and Recovery in UAE

Two ASR projects in AD

Sharjah Project in Nizwa

SWS, 2010

Common Elements of MAR

The seven elements common in MAR systems (a) injection wells, and (b) infiltration basins (Pyne 2005)

ASR technical issues

- Physical storage increase amount of water in storage in an aquifer.
- Chemically bounded injected freshwater displaces water of lesser quality.

 <u>Regulatory storage</u> (water banking) – injection confers the right to later withdrawal water.

MAR Phases

Feasibility study (current project) Exploratory program Pilot MAR study • Full-scale MAR implementation •Maintenance and adaptive management

Study Areas

Study area 2

Study area 1

Meeting with Stakeholders

Several meeting were conducted with delegates from:

- Ministry of Environment and water
- Al-Ain distribution company
- National Drilling company
- Al-Ain municipality
- Abu Dhabi Sewerage Services Company
- Environmental Agency of Abu Dhabi.

Data Considered > Depth to GW > GW Aquifer > Hydraulic Conductivity > Soil Type Land Surface Topography > Impact of Vadose Zone > Land Surface Slopes > Land Use Distribution > Distance from source

Ranking

Ranks		Influence for identifying artificial recharge sites			
5		Very good			
4		Good			
3		Moderate to Good			
2		Moderate			
1		Poor			

Parameter	Class	Rank	Wt.	Parameter	Class	Rank	Wt.
Geology	Gravel Plain Desert Plain	4.8 4.1	4.5	Rainfall	130 mm 100 mm	1	2
	Fluviatile Sediments	4.5			70 mm	1	
	Sand Dunes	4.3			40 mm	< 1	
	Limestone and Marl	1			< 10 mm	< 1	
	0-10	5	1	Storativity	Gravel	4	4
	1-30	4	1		Coarse Sand	4.2	
Slope	3-70	3			Fine Sana	4.5	
	> 15 0	2			Rock	2	
	Pediment zones	4.75		Soil	Alluvial Gravels	5	3
	Structural hills	4	3.5		Fluviatile sandy soil	4	
Morphology	Desert	3			Brown Soils (Desert Sands)	3.5	
	Inter-dune Areas	2.8			Fine sand - Silt	3	
	Mountains	1			Hills (Bare Bedrock)	1	
	Plateau	3 – 3.5					
	< 6 m	1	6	Land Use	Buildup Area	1	3.5
	6.1 – 12 m	2			Agriculture	3.5	
Water Level	12.1 – 18 m	3			Rangelands and Grazing lands	2.5 - 3	
	18.1 – 24 m	4			Forestry and wooded parklands	4	
	> 24 m	5			No Vegetation - Rocks	1	

Hydraulic Conductivity

Unsaturated Zone Properties

water saturation, capillary pressure, relative permeability, hydraulic conductivity, effective porosity

Properties of Vadose Zone

Land Use

Processing

Ranking

Ranks		Influence for identifying artificial recharge sites			
5		Very good			
4		Good			
3		Moderate to Good			
2		Moderate			
1		Poor			

Parameter	Class	Rank	Wt.	Parameter	Class	Rank	Wt.
Geology	Gravel Plain Desert Plain	4.8 4.1	4.5	Rainfall	130 mm 100 mm	1	2
	Fluviatile Sediments	4.5			70 mm	1	
	Sand Dunes	4.3			40 mm	< 1	
	Limestone and Marl	1			< 10 mm	< 1	
	0-10	5	1		Gravel	4	4
	1-30	4	1	.	Coarse Sand	4.2	
Slope	3-70	3		Storativity	Fine Sand	4.5	
	7-150	2			SIII	5 2	
		1 75				2	3
	Pedimenizones	4.75	3.5	Soil	Alluvidi Graveis	5	
	Structural hills	4			Fluviatile sandy soil	4	
Morphology	Desert	3			Brown Solis (Desert Sands)	3.5	
5	Inter-dune Areas	2.8			Fine sand - Silt	3	
	Mountains	1			Hills (Bare Bedrock)	1	
	Plateau	3 – 3.5					
	< 6 m	1		Land Use	Buildup Area	1	3.5
	6.1 – 12 m	2	6		Agriculture	3.5	
Water Level	12.1 – 18 m	3	Ũ		Rangelands and Grazing lands	2.5 - 3	
	18.1 – 24 m	4			Forestry and wooded parklands	4	
	> 24 m	5			No Vegetation - Rocks	1	

GIS-based MAR site selection

MAR Phases

Feasibility study (current project) • Exploratory program (2nd phase) Pilot MAR study (3rd phase) Full-scale MAR implementation •Maintenance and adaptive management

Geophysical survey

Groundwater samples

Groundwater samples

Groundwater Model

Groundwater Model

Model Calibration

Groundwater Model

After 5 years

After 20 years

MAR Phases

Feasibility study (current project) • Exploratory program (2nd phase) • Pilot MAR study (3rd phase) Full-scale MAR implementation •Maintenance and adaptive management

Conclusions

- Currently, about 50% of sewage water generated is diffused after purification.
- If this water is wisely recharged into groundwater aquifers, it can help building a back-up reservoir to face potential threats of shortage in freshwater supply in emergency cases.
- Ultimately, upon completion, this project could lead to replenishing the aquifers with 25 and 100 MCM of TSE water generated annually in Al-Ain and Dubai.
- The advantages of ASR are compelling very large volumes of water can be stored underground at a fraction of the cost of other storage options.
- However, Inadequate aquifer characterization can cause the ASR system to fail.

