#### IMPACT OF CLIMATE CHANGE IN CONTAMINATION VULNERABILITY OF MESOZOIC KARST AQUIFERS IN BURGOS AREA (SPAIN).

#### By: Dr. Luis Marcos UNIVERSITY OF BURGOS (Spain)

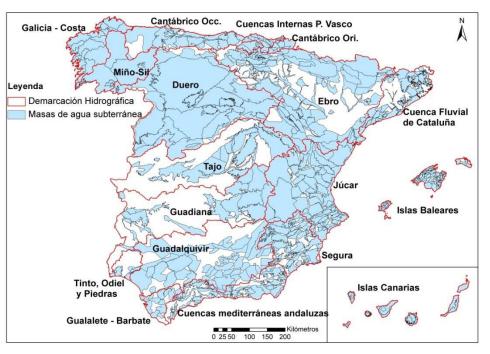


UNIVERSIDAD DE BURGOS

## Index

- Aquifers in Spain.
- High Arlanza Basin.
- Karstic Aquifers in High Arlanza Basin.
- Groundwater Flows in High Arlanza Basin.
- Groundwater Hydrochemistry.
- Multivariate Analysis. Factor Analysis.
- Climate Change Impact on Karstic Aquifers in High Arlanza Basin.
  - Hydrogeological Flows.
  - Chemical Composition.
  - Vulnerability to Pollution.
- Conclusions.
- References.



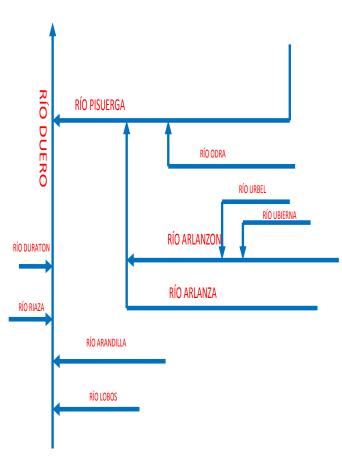





# Aquifers in Spain



- Spain is among the most arid countries in the EU, with a large hydrogeologic potential with 699 groundwater bodies widely distributed.
- Annual aquifer recharge is about 30% of the total water resources available, mainly used for irrigation, and often concentrated in exploited aquifers in the Mediterranean side.
- Duero Basin is the largest in the Iberian Peninsula, with a surface of 97.290 km2. Climate is Mediterranean, continental.
- The average annual rainfall varies in the range of 400 mm/year in the central depression to 1800 mm/year. Rainfall is irregular, falling mainly from autumn to spring.




- It has a population of 2.2 million, mainly located in the most important cities, with rural areas very unpopulated.
- In the depression predominate tertiary and quaternary detrital aquifers, but Mesozoic karstic aquifers in the surrounding mountain areas.

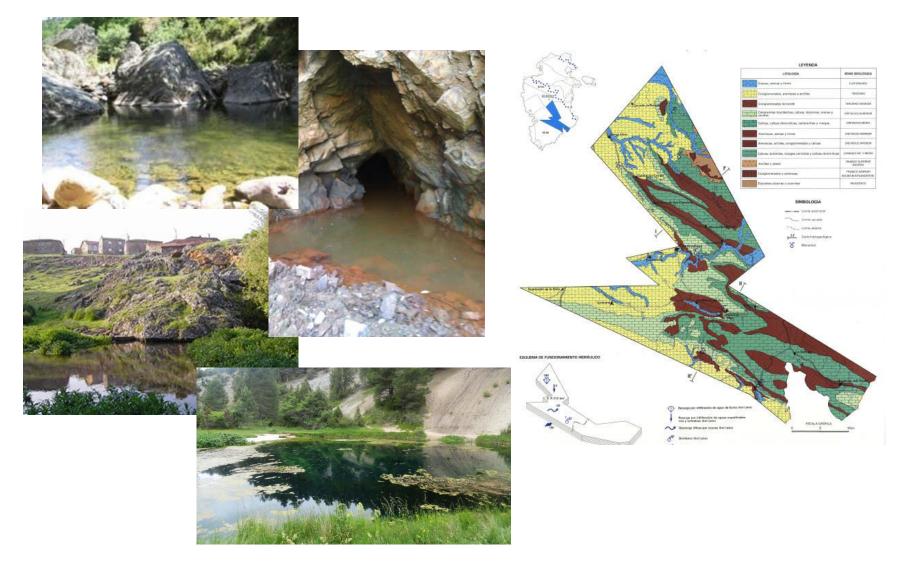
### High Arlanza Basin







#### High Arlanza Karstic Aquifers (I)


- Arlanza basin at the headwater has important karstic aquifers, mainly developed on Mesozoic limestone.
- Unit Surface: 2500 km2.
- Groundwater Resources: 1100 hm3.
- Rainfall recharge: 160 hm3/year.
- Recharge from rivers: 6 hm3/year.
- Pumping discharges: 1 hm3/year.
- Aquifers discharges: 60 hm3/year.
- Main discharges:
  - Total: 105 hm3/year.
  - Big springs (100-500 l/s): 35 hm3/year.
  - Rivers: 55 hm3/year.
  - Diffuse discharges: 15 hm3/year.





#### High Arlanza Karstic Aquifers (II)





#### High Arlanza Karstic Aquifers Hydrochemistry



- 107 groundwater samples.
- Big springs.
  - Medium conductivity
  - Ca-Mg-HCO3
- Small Springs.
  - Low conductivity
  - Cа-НСОЗ.
- Detrital aquifers.
  - Very low conductivity
  - Са-НСОЗ

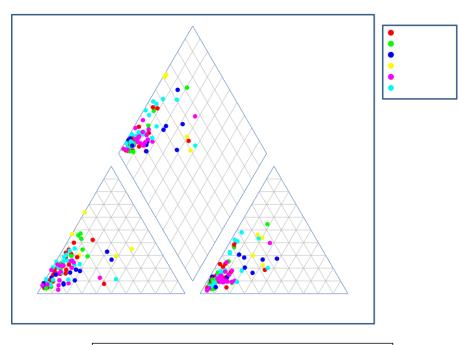
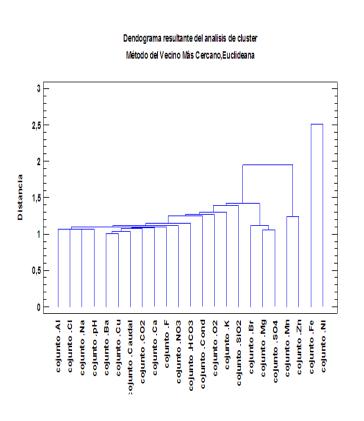




Diagrama Piper de todas las muestras

#### Multivariate Analysis

- Cluster of chemical variables based in lithological factors:
- Fe-Ni.
- Mn-Zn.
- Mg-SO4-Br.
- SiO2.
- K-HCO3-Ca-NO3-F-CO2.
- Al-Cl-Na-pH.

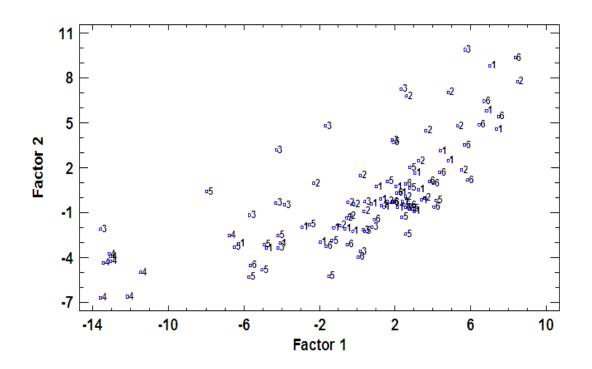




#### Factor Analysis (I)



# Factor Analysis and Variables Clustering:


- Factor 1:
  - Cond-Ca-HCO3-pH-Mg-SO4.
- Factor 2:
  - NO3-Na-Cl-Ba-K-SiO2.

| Componente |            | Porcentaje de | Porcentaje |
|------------|------------|---------------|------------|
| Número     | Eigenvalor | Varianza      | Acumulado  |
| 1          | 4,52091    | 21,528        | 21,528     |
| 2          | 2,68487    | 12,785        | 34,313     |
| 3          | 2,23023    | 10,620        | 44,933     |
| 4          | 1,61034    | 7,668         | 52,602     |
| 5          | 1,39123    | 6,625         | 59,227     |
| 6          | 1,25571    | 5,980         | 65,206     |
| 7          | 1,15821    | 5,515         | 70,721     |
| 8          | 0,960915   | 4,576         | 75,297     |
| 9          | 0,890213   | 4,239         | 79,536     |
| 10         | 0,744311   | 3,544         | 83,081     |
| 11         | 0,695074   | 3,310         | 86,390     |
| 12         | 0,63278    | 3,013         | 89,404     |
| 13         | 0,554011   | 2,638         | 92,042     |
| 14         | 0,485167   | 2,310         | 94,352     |
| 15         | 0,358422   | 1,707         | 96,059     |
| 16         | 0,223088   | 1,062         | 97,121     |
| 17         | 0,18692    | 0,890         | 98,011     |
| 18         | 0,177053   | 0,843         | 98,854     |
| 19         | 0,149607   | 0,712         | 99,567     |
| 20         | 0,0771388  | 0,367         | 99,934     |
| 21         | 0,0138118  | 0,066         | 100,000    |

#### Factor Analysis (II)



Diagrama de Dispersión



### Vulnerability DRASTIC



- Altitude: 800-1200.
- Slope: 2-30%
- Ann. T<sup>a</sup>: 8,5-10,5 <sup>o</sup>C.
- Ann. Rainfall: 600-1100 mm.
- Ann. Infiltration: 80-300 mm.
- Depth Water: 40-150 m
- Hydraulic conductivity: 1x10-4 – 3x10-3
- DRASTIC INDEX: 20-60.

Tabla 1

Peso de cada variable según su importancia de acuerdo con DRASTIC

| PARÁMETROS                                                                    | Peso (W)<br>General | Peso (W)<br>Pesticidas |
|-------------------------------------------------------------------------------|---------------------|------------------------|
| D- Deep Water (Profundidad del acuífero) (m)                                  | 5                   | 5                      |
| R- Recharge Net (Recarga Neta) (mm/año)                                       | 4                   | 4                      |
| A- Aquifer media (Tipo de Acuífero)                                           | 3                   | 3                      |
| S- Soil Media (Tipo de Suelo)                                                 | 2                   | 5                      |
| T- Topography (Topografía, Pendiente) (%)                                     | 1                   | 3                      |
| I- Impact of Vadose Zone (Impacto de la Zona Vadosa)                          | 5                   | 4                      |
| C- Conductivity, Hydraulic (Conductividad Hidráulica<br>del Acuífero) (m/día) | 3                   | 2                      |

### Climate Change Impacts (I)



Models for 2071-2100 show scenarios in North Central Spain (Arlanza Basin):

- T summer +5-6ºC.
- T winter +2ºC.
- P summer -0,25 mm/d.
- P winter ===.
- Annual P 8%
- PET increases.
- Water Resources 20%

#### Effects on Groundwater:

- Aquifer Recharge -25%
- Dry up small Springs.
- Big Springs Flow reduced.
- River Flow reduced.
- High impact in flow by extreme droughts.
- Deep Water Table.
- Increase of Water Demand.
- Reduction on permeability.

### Climate Change Impacts (II)

Water Quality:

- Increase in CO2 concentration.
- Increase in Limestone disolution.
- Increase in dust feed.
- Increase in chemical from forest fires.
- Increase in Residence time in Karst Aquifers.
- Increase Conductivity and Dissolved Solids in Water.
- Organic Metabolites increased.



## Conclusions



- More control and research on Climate Change effects.
- Reduction on Greenhouse Gases Emissions.
- Increasing Aquifer Artificial Recharge.
- Use of Aquifers as buffers systems.

Proyecciones de cambio climático en 2071-2100 SRES-A2 DEF JJA 5 4 00 3 3 2 2 80 Incremento de temperatura (°C) DEF JJA +2 +0.5 +0.5 +0.25 +0.25 0 0 00 - 0.25 - 0.25 - 0.5 - 0.5  $D^2$ 0

Cambio de precipitación (mm/día)