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A set of monitoring sites- which may be physically connected
Sampling through time and over space, often sparse in space and not
always representative
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displays real-time water quality data collected remotely by sensors
installed in rivers, and lakes. Readings taken every 5 to 60 minutes are transmitted via
satellite to the USGS National Water Information System (NWIS). Data include water
temperature, pH, specific conductance, turbidity, dissolved oxygen, and (or) nitrate
depending on the site.
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 Visualisation and modelling needs to include space and
time, and also should reflect the connectedness of the sites.

« Spatial interpolation, temporal trends, spatio-temporal
modelling-all deliver tools to address questions about
change and trends, effects of interventions but

 (things close together in space, or time are more alike than
things which are far apart), so our models must account for
the existence of spatial and temporal correlations

« Quality and quantity of data can challenge- dealing with
missingness and sparseness
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Our goals

« Estimation at unmonitored
locations

» Determination of overall
changes in mean levels

« Quantification of uncertainty

 Insight into current sampling
schemes

Example

River Tweed, 83 sites

Nitrate data from 1986 - present
With SEPA >16,000 data points




River networks
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_ Spatial models for stream networks
| g ST using stream distance rather than
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networks-temporal
patterns

Irregular sampling in time, with more
regular sampling frequency - large
amounts of data

Irregular in space; preferentially sampled,

monitoring sites change in time
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from October 2003 to September 2006.
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Pollutant = Spatial + Seasonal + Trend + Local Effects+ Error

log Niate concentratons

Nitrate concentrations
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Predictions: winter.1990
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Earth Observation systems and the increased capability
to retrieve in-water constituents provides exciting new

=y data sets and statistical challenges. A hierarchy of
linked data streams.

Globolakes is a 5 year consortium NERC project, to
investigate the state of 1000 lakes using a 20 year
archive of satellite based observations.

A key aim is to identify patterns of temporal coherence
for individual remotely sensed lake characteristics and
the spatial extent of coherence.
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Lake Victoria
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R
Missing data
challenges

a) Statistical model,
b) data,
c) reconstruction

1995-07
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In-situ, satellite (left)
through data
assimilation and
calibration to
chlorophyll (right)
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Network challenges: data linkage of satellite (grids of 300m or 1km), in-
situ (spot), cloud cover hence missingness, spatially sparse, temporal
heterogeneity. Statistical hierarchical models to combine the data

streams and to quantify uncertainty
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Data challenges

Dealing with the quantity of data in terms of
the number of pixels, combined with the
sparsity of the data, in terms of the time
series observed will be a huge challenge.

Modern functional data approaches are
suitable for large numbers of time
series of potentially noisy data and
enable clusters of curves to be
identified which are coherent in terms
of temporal dynamics. st
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Peipus

Chlorophyll at Lake Peipsi, Estonia
Monthly obs, 2002-2012
(Data from DIVERSITY Il project)
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challenges

From a network we can learn:
» whether there are seasonal patterns and trend
« Whether the patterns are different at different locations

« How to make predictions at any point on the network, regardless of whether
it is near a monitoring site

challenges

« Data characteristics- quantity and quality and relatedness

* Non stationary, complex nature of the relationships

* For networks, how to build fast and efficient spatio-temporal models,
« Designing the network and the resulting power to detect change
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