GROUNDWATER BASED RICE FARMING IN GANGA BASIN- A SUSTAINABILITY STUDY

Dhananjoy Dutta

All India Coordinated Research Project on Water Management Bidhan Chandra Krishi Viswavidyalaya (State Agricultural University) India

E-mail: dutta_dhananjoy@rediffmail.com

Paper presented in the XV World Water Congress, Edinburgh, May 25 - 29, 2015

The study areas in West Bengal under Lower Ganga Basin

River Bhagirathi (distributary

Study areas in 5 districts of West Bengal in Lower

Farming major source of livelihoods

(91% small farmers)

Pre-dominance of rice farming

(Staple food)

Groundwater **based** irrigated farming

(84% irrigated land)

Farming characters of the study areas

Challenges ahead.....

Resources sustainability

Society

Food security

Environmental stability

1. To analyze the trends of groundwater development vis-a-vis rice farming

- 2. To study environmental consequences
- 3. To address the issues towards sustainable management of water resources in lower Ganga basin of India

Methodology

Primary Data Generation

Field study area	75 Villages from 5 districts of West Bengal	Purposive from Lower	
Farm household survey	1500 respondents	Random s questionna	
Water-table monitoring	45 hydrological points	'Steel tape and	
Arsenic analysis	3000 tube-well drinking water samples	Standard (AAS-FIAS	
Secondary Data Source			
Government literatures	Minor Irrigation Reports, Central Ground Water Board Reports and Field Crops Statistical Abstracts	Compilati	

e selection Ganga Basin

selection & aire method

d chalk' method

l methods S 400-HG)

ion of data

Findings

Development of irrigation facilities during 1986 -2010

DW (Dug-well), STW (Shallow tube-well) & DTW (Deep tube-well) are groundwater irrigation sources SF (Surface flow) & SL (Surface lift) are surface water irrigation sources

✓ 80% growth in STW & **DTW ground water**

trends in surface irrigation (SL)

Groundwater irrigation development triggers summer rice cultivation (January to May)

Area expansion rate of summer rice about 300% during last two and half decades

Reduction of cultivated area of other low-water requiring crops, specially wheat and pulse crops

Environmental consequences

Periodical depletion of groundwater table

* Pre and post monsoons studies conduct in May and November months respectively

✓ Water-table is more or less due to exhaustive pumping without any efficient

Effects of groundwater depletion and people awareness

Effects in pre-moon period	Total	Number showir
	observations	the effects
Difficult to pump hand tube-wells for drinking water	900	576
Non-functioning of tube-wells	900	153
Shallow tube-wells replaced by deep submersible pumps	350	245
Drying up of dug-wells	80	25
People aware of environmental consequences	1500	270

Arsenic contamination in groundwater

3000 tube-wells drinking water samples tested

Exhaustive pumping of groundwater for summer rice cultivation aggravates pollution in the basin region ✓ 11 blocks out of 15 surveyed are exposed to arsenic toxicity beyond WHO permissible limit for drinking water 10µg/L

✓ 53% of tube-well drinking water contains arsenic above 10 μ g/L and 25% above 50 μ g/L

arsenic

Mechanisms of Arsenic contamination in groundwater

Oxidation Arsenopyrites (Non-toxic form)

Arsenite [As (III)] & Arsenate [As (V) (Toxic forms)

Arsenopyrites – a geogenic formation from the underground rocks along the Ganga basin and it is present in soils (aquifer sediments in non-toxic forms)

Excessive pumping of groundwater creats a vacuum by lowering water-table and causes entering of atmospheric oxygen into the underground aquifers

Then oxidation of arsenopyrites to form toxic arsenite and arsenate, which are water soluble and leaching to groundwater

Arsenite is more toxic than arsenate

Symptoms of chronic arsenic poisoning

Arsenicosis (Skin lesions and cancers)

Resources management for sustainability

Supply-side management strategies:

Collaboration of stakeholders and public agencies in decision making process

Building people awareness about mechanisms of water depletion and arsenic contamination

Strong institutional mechanisms in enforcing the regulatory laws

Enactment of 'Groundwater Regulation Laws 2004'

Empowering village administrations for issuing new permits for withdrawal of groundwater

Supply-side management strategies:

In-situ rainwater harvesting in village ponds and tanks

> **Development of** surface water irrigation to reduce pressure on groundwater

Investment on River lift surface irrigation system

Grow rice with less water

Adoption of watersaving SRI rice technology through training and incentives of farmers

Switching over to low water requiring cropping pattern

Demand side management strategies

Research on aerobic rice cultivation

Promote wheat, pulses and oilseeds crops by replacing summer rice

Conclusions

Considering the deleterious effects of groundwater based rice farming on environment of the river basin, the study calls for a paradigm shift in policy from further groundwater development to sustainable water resources management. The sustainability of water resources of the region will largely remain a function of the working of this integrated supply and demand side management regimes.

