

International Development Research Centre Centre de recherches pour le développement international


Environmental Economics and Climate Change

ESTIMATING THE VALUE OF WATER IN THE CHILEAN INDUSTRY: A MARGINAL PRODUCTIVITY APPROACH

Leonardo Vargas, Felipe Vásquez, Roberto Ponce

Introduction: Water situation in Chile

- "Scarcity" of water property rights (DGA, 1999; Salazar, 2003; UChile, 2010)
- Droughts have decreased significantly water availability for Hydroelectric generation (DGA, 1999; UChile, 2010).
- Reduction in Wetlands (Larraín et al., 2010)
- Several Water conflicts

Conflictos por el Agua en Chile

Entre los Derechos Humanos y las Reglas del Mercado

(Larraín et al., 2010)

Water consumption in Chile

TTTT	Offstream				Instream	
Use (m3/s)/Year	Agro-forestry	Residential	Industrial	Mining	Electricity	Source
1990	515.8	27.4	47.1	43.2	1189	
%	81.4	4.3	7.4	6.8	100	UChile, 2013
1991	-	-	-	-	-	
%	85	4	6	5	100.0	UChile, 2002
1995	546	30	53	46	1603.0	DCA 1000
%	80.9	4.4	7.9	6.8	100.0	DGA, 1996
1998	546	35.0	45.5	32.5	1387.6	DCA 1000
%	82.9	5.3	6.9	4.9	100	DGA, 1999
1999	611.4	34.1	68.2	50.5	2914	
%	80.0	4.5	8.9	6.6	100.0	UChile, 2013
2002	647.0	36.7	77.2	53.2	3929	
%	79.5	4.5	9.5	6.5	100	UChile, 2013
2006	526.7	40.1	83.8	62.8	3997.2	
%	73.8	5.6	11.8	8.8	100	UChile, 2013
2010	_	-	-	-	-	
%	73	6	12	9	100	UChile, 2013
2014	_	-	-	_	_	
%	64.6*	9.2*	12.4*	13.8*	100	DGA, 2014
2017	_	_	-	-	-	
%	76.9	4.7	12.2	6.2	100	Matus, 2004
2030	-	_	-	-	-	
%	60	5	26	9	100	UChile, 2013

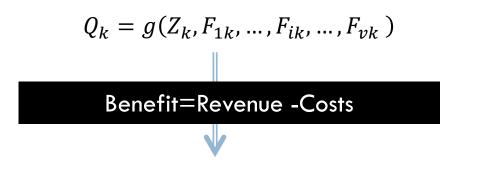
Why to value water?

- The Economic value of water can have several uses in public policy
 - Cost-benefit analysis of project that affect water quantity or quality.
 - Contribute to prioritize water uses according to their economic and social value.
 - Promote efficient use of water.
 - Allow to evaluate policy at a basin scale contrasting industrial, agricultural, forestry and residential uses.
 - Calculation of compensation at industrial level in the context of social conflicts in water use.
 - Experimental ecosystem services accounting.

To estimate the Economic value of water for the industrial sector in Chile.

 Ghosh (2009) : General review of economic value of water for three uses: Residential, industrial and Agriculture, Ecosystems,

Frederick (1996): Meta analysis for the USA reporting 494 estimations of the economic value of water.


DeGispert (2004): evaluate the implication of different tariff structure in the industrial sector.

Literature Review

		Paper: Year-1 st author	Geographic Zone	Approach	Direct input- price elasticity of <i>W</i> _i
		1969-Rees	UK, SE England	Water demand	-
		1969-Turnovsky	USA, Massachusetts	Water demand	-0.50/0.63
	W=f(Average price).	1973-Oh	USA, Hawaii, Honolulu	Water demand by locality	-1.67/0.28
	OLS, GLS.	1974-De-Rooy	USA, New Jersey	Water demand	-0.89/-0.74
	020, 020.	1979-Grebenstein	USA	Total costs	-0.80/-0.33
		1982-Babin	USA	Total costs	-0.66/0.14
	Correcting W estimation for selection	1984-Ziegler	USA, Arkansas	2 water demand eq.: a) with average price, b) with marginal price	-0.08
	bias.	1986-William	USA	Water demand by locality	-0.97/-0.44
	blas:	1988-Renzetti	Canada, B. Columbia	System of cost equations	-0.54-0.12
		1990-Renzetti	Canada, B. Columbia	System of cost equations	-1.91
	Estimate Cost function	1991-Schneider	USA, Columbus	Water demand by locality	-0.15/-0.59
	on Q and other inputs	1992-Renzetti	Canada	Water costs	-0.59/-0.15
	prices.	1993-Renzetti	Canada	2 stages. 1) Decision supply;2) 2 water demand eq.:a) private supply, b) public supply	a)-1.14/-0.05 b)-2.17/-0.65
		1998-Dupont	Canada	Water costs	-0.38/-0.26
	SURE system of inputs	1999-Malla	USA, Hawaii	2 water demand eq.: a) total, b) consumed by jobs	-0.37
demands.		2001-Dupont	Canada	2 total costs eq.: a) quasi-fix water, b) variable water	-0.78
		2001-Onjala	Kenia	Water demand (dynamic adjustment)	-0.60/-0.37
	Equation cost system	2002-Hussaina	Sri Lanka	Water demand	-1.34
	for W_T , W_R , W_D y W_l ,	2002-Wang	China	Total production	-1.20/-0.57
	(LS3S).	2003-Feres	Brazil, Sao Paulo	Total costs	-1.18/-1.06
	(2000).	2003-Renzetti	Canada	Total costs	-0.13 <i>W</i> _A)-2.21/-0.90 *
	Dreduction function	2003-Reynaud	France, Gironde	Water costs	W_A)-2.21/-0.90 * W_N)-0.79/-0.10 *
	Production function	2005-Feres	Brazil, Sao Paulo	Total costs	-1.16/-1.02**
	Q=F(inputs).	2006-Kumar	India	Distance factors	-0.94/-0.30
		2006-Liaw	China, Taiwan	Total costs (engineering)	-4.37/-0.02
	Others.	2010-Bruneau	Canada	2 stages. 1) Decision of technology; 2) Demand for water reuse	W_{R}) 0.48*
		2012-Feres	Brazil, P. S. river basin	2 stages. 1) Decision of technology;2) 2 water demand eq.:a) reuses water, b) no reuses water	a)-4.82/-1.82 b)-2.69/-0.49
		2012-Ku	South Korea	Total production	-1.44/3.97**

Methodology

Production function (Revenue)

Optimal condition

$$o_{F_ik} = \frac{\partial Q_k}{\partial F_i} = P_{F_i}$$
 Shadow price

Trans-Log production function

$$\ln Q = h(Z, F_1, \dots, F_i, \dots, F_v) = Z + \sum_{i=1}^{v} \beta_i \ln F_i + \sum_{i=1}^{v} \delta_i (\ln F_i)^2 + \sum_{i=1}^{v} \sum_{\substack{j=1\\j \neq i}}^{v} \varepsilon_{ij} (\ln F_i) (\ln F_j)$$

Methodology

Product-input Elasticity

$$\sigma_{F_i} = \frac{\partial \ln Q}{\partial \ln F_i} = \beta_i + 2\delta_i \ln F_i + \sum_{\substack{j=1\\i\neq j}}^{\nu} \varepsilon_{ij} \ln F_j$$

Productivity

$$\rho_{F_i} = \sigma_{F_i} \frac{Q}{F_i}$$

Direct input-price elasticity

Cross-price input elasticity

$$\gamma_{F_iF_i} = \frac{\partial \ln F_i}{\partial \ln P_{F_i}} = \frac{\sigma_{F_i}}{2\delta_i + \sigma_{F_i}^2 - \sigma_{F_i}}$$

$$\gamma_{F_iF_j} = \frac{\partial \ln F_i}{\partial \ln P_{F_j}} = \frac{\sigma_{F_j}}{\varepsilon_{ij} + \sigma_{F_i} \cdot \sigma_{F_j}}$$

Data

- National Survey of Industrial activity (ENIA)
- CIIU
- Panel 1995 -2006 (12 years)
- 51,449 observations

Variable	Mean	SD	Min	Max
Q (thousands of \$)	2,940,524	2.5E+07	1469	2.2E+9
W (quantity of m ³)	28,542	4.4E+05	1	3.6E+7
Cost of W (thousands of \$)	8,040	2.0E+05	0	2.5E+7
K (thousands of \$)	1,961,823	3.0E+07	0.7	4.0E+9
L (number of people)	74	158.2	1	4,432
Cost of L (thousands of \$)	283,265	9.7E+05	0	4.1E+7
E (thousands of \$)	97,467	1.1E+06	0.7	1.1E+8
M (thousands of \$)	2,182,848	1.9E+07	0.1	9.5E+8
Property (1: foreign)	10%	0.3	0	1
Firm size (1: L>=150)	11%	0.3	0	1
Dummies for year, CIIU				
clasification, region				

Results and discussion

Elasticities and productivities

	W	K	L	Ε	М
σ	0.0172	0.0483	0.2959	0.0600	0.6160
ρ (thousands of	1.7751	0.0724	11,764	1.8117	0.8298
CL\$ 1995/m³)					
γ_W	-1.3191	40.600	26.820	-94.416	156.16
γ_K	14.488	-1.3933	9.2314	12.631	59.754
γ_L	1.5615	1.5061	-2.8606	21.006	7.8053
γ_E	-27.090	10.156	103.52	-6.2767	-111.40
γ_M	4.3678	4.6837	3.7499	-10.860	-6.8482

Elasticities and productivities by sector

Measure	σ_W	ρ _W (thousands of CL\$ 1995/m3)	Ŷww	Mean cost (thousands of CL\$ 1995/m3)
General	0.0172	1.7751	-1.3191	5.1031
151	0.0239	2.4617	-1.2284	5.0066
152-155	0.0169	1.7453	-1.3253	5.4462
153	0.0173	1.7805	-1.3180	4.8477
154	0.0115	1.1799	-1.5372	5.3560
17	0.0066	0.365	-2.4708	4.7834
18	0.0088	0.9018	-1.8216	4.9413
19	0.0127	1.3093	-1.4648	4.9995
20	0.0335	3.4531	-1.1751	4.4589
21	0.025	2.5769	-1.2192	4.8664
22	0.0109	1.1225	-1.5778	4.9031
24	0.0305	3.1443	-1.1867	5.4496
25	0.015	1.5408	-1.3770	5.0594
26	0.0176	1.8124	-1.3117	5.0065
27	0.0425	4.3747	-1.1542	4.9229
28	0.0235	2.4163	-1.2323	5.5530
29	0.0222	2.2892	-1.2445	5.0435
31-32-33	0.0183	1.8811	-1.2992	4.9824
34-35	0.0177	1.8262	-1.3091	5.5286
36	0.0072	0.4264	-2.2075	4.9000

CONCLUSIONS

- Input elasticity was estimated as -1.32 (-2.47 "textile" / -1.15 "metals")
- Implicit price of water was of 1,775 CL\$/m3 of 1995 (US\$3).
- We found substitution for inputs except for Energy and water and Intermediate material and energy.
- The sector "commons metals" are the most intensive in water use, lower elasticity and high value.