

Analysis of Heavy Metals in Canal Sediments to Gain a Better Insight into Current and Future Canal Management Strategies

†I. Clark, †C. Somerfield, †V. Archibald, †T. H. H. Tran, ‡L. Bradley, †R. Gomes

[†]Department of Chemical and Environmental Engineering, The University of Nottingham, United Kingdom

[‡]Canal and River Trust, Leeds, United Kingdom

Contact: <u>enxic1@nottingham.ac.uk</u> I. Clark

rachel.gomes@nottingham.ac.uk R. Gomes

Canal and Waterway Management

Historical industrial route Canals and Waterways
— Coal glass and metal-working maintained by Canal & River Trust (previously British peak operation Waterways)

- Leisure Route
- Maintenance in ludge ation
 - Depth maintenance
- Conficute the relation of Systems at a number of intersections

Canal Maintenance

- Depth maintenance
 - 25 year plan in urban canals
 - 40 year plan in rural canals
 - 8 year survey period
 - Dredging as required at confluences, inlets
- Removal carried out in stages
 - Canal sediment modelling/hydrographic surveys
 - Sectional dredging
 - Sediment disposal via incineration/landfill

Background, Aim and Objectives

Dredging expenses in 2014 totalled £4.4m

 Canal & River Trust intend to invest £8-10M a year for the next decade on canal maintenance

- Canal & River Trust identified current disposal methods as an area for improvement by
 - Recovering and recycling contaminants present in the sediments
 - Reducing the volume of waste sent to landfill

Background, Aim and Objectives

- Aim to improve maintenance sustainability by developing a better understanding of canal sediment contamination
- Objectives of the project were to:
 - Identify constituent compounds/elements in canal sediments that require remediation or are recoverable based of value of recycling
 - Evaluate processes that may allow efficient recovery of target constituents
 - Investigate economic feasibility of potential scale up options
 - Measuring sediment accretion to enhance dredging plans

Elements of Interest

Target Element	Landfill Limit /mg kg ⁻¹	Leach limit /mg	EQS /μg l ⁻¹
As	0.4	0.3	10
Cd	0.6	0.3	5
Cr	4	2.5	50
Pb	5	3	50

- 32 elements targeted
 - 6 heavy metals shown
 - Environmental Regulations
 - Economic Potential
- Legislation Directives
 - 2006/11/EC-Dangerous substances in the aquatic environment
 - 1999/31/EC; 2003/33/EC -Landfill

Target Element	Historical Applications	Current Applications
Со	Ceramic and Glass Pigment	Temperature/Corrosion resistant alloys, nanotechnology and chemical industries. 30,680 USD/t. source LME
Mn	Ceramic and Glass Pigment, Steel Production	Steel and alloy production. Year end value-2,350 USD/t. source ICE

Metals Recovery Method

World Water Congress XV

Metal Concentration and distribution

Metal Concentration and distribution

05/03/2016

Management Strategies

Areas for improvement

- Recovering and recycling contaminants present in the sediments
- Reducing the volume of waste sent to landfill

Drivers behind improvement

- Environmental and economic considerations for current practice versus potential management practice
- Concentration of analytes in the sediment may at a level requiring disposal to hazardous landfill (sustainability issues)
- Current practice of blending requires analytical service costs and availability of uncontaminated material (sustainability issues)
- Economics also extend to associated transport and disposal* costs.
 - *dredging activities are exempt form landfill taxes

Management Strategies

- •Improved knowledge on distribution and concentration of heavy metals targeted management/treatment of sediment
- Targeted treatment
 - Less inert material for blending
 - Carry out targeted remediation allowing recovery of materials
- Recovery of materials
 - Metals and inorganic constituents
 - Sediment
- •Any recovery method must be economically and environmentally viable

Heavy Metal	Lowest mean concentration /mg kg ⁻¹	Landfill limit /mg kg ⁻¹
As	34.1 ± 8.1 location 1	0.4
Cd	20.0 ± 1.4 location 5	0.6
Cr	241.7 ± 15.7 location 1	4
Pb	790.7 ± 80.9 location 4	5

Summary

- Comprehensive sampling-Depth and Location
- Constituent concentration depth, location and element specific
 - Aqua Rega digest does not provide absolute recovery data
- Depth and location data allows the possibility of targeted remediation
- Recovery of constituents and sediment material
- More work needed in inorganic and organic constituent identification

Acknowledgements

UNITED KINGDOM · CHINA · MALAYSIA

 John Hinchcliffe and Brian Vincent – Design and manufacture of sampling and extraction equipment

Adele Lawrence, Priscilla Cavalheiro Mendes Moitta,
 Xiao-Xi Liu and Hannah Beska – Sampling and analytical support

- Dave Clift Sample extraction and analytical support
- Victoria Taylor Hydrographic survey and current sediment management practices

Questions-Aqua Regia/Total Digest

UNITED KINGDOM · CHINA · MALAYSIA

