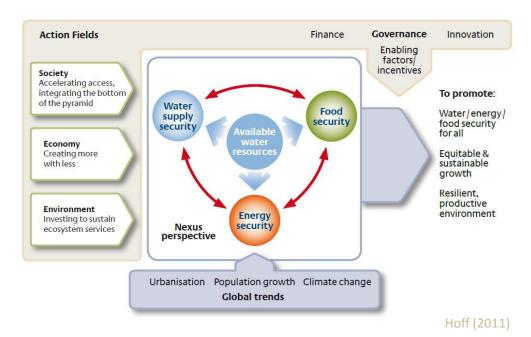


Assessing water supply and demand vulnerabilities within the water-food-energy nexus: a quantitative perspective from Western Australia


Ellie Biggs¹, Bryan Boruff², Natasha Pauli², Julian Clifton² and Nik Callow²

¹Geography and Environment, University of Southampton, UK ² Earth and Environment, University of Western Australia, Australia

A NEXUS APPROACH

- Water-energy-food

 \rightarrow How can we measure?

- Accelerating development
- **Urbanisation**
- Climate change
- Globalisation
- Resources degradation
- Land and water scarcity
- security

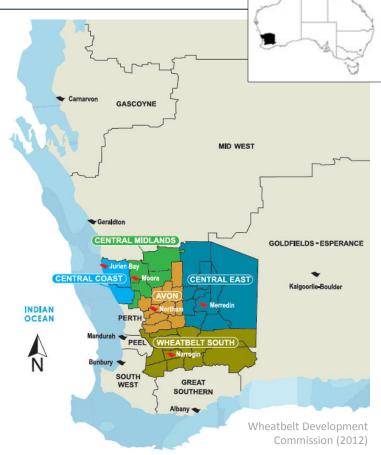
Highly applicable to Western Australia

SPATIAL MULTIDIMENSIONAL INDICES

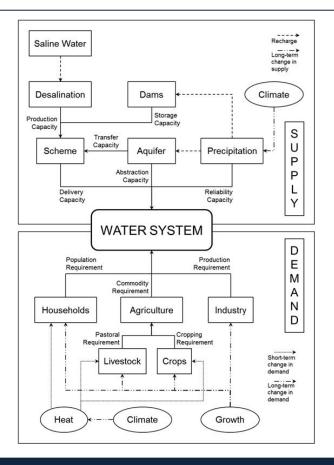
Integrated index

- Representative of environmental and socioeconomic conditions
- Address water-energy-food scarcity
- Promote equal development
- More informative for decision-making
- Greater potential to effectively improve livelihoods

e.g. Sullivan et al. (2008); Cohen and Sullivan (2010); Sullivan (2011); Sullivan and Meigh (2005)


Spatial application

- Appropriate scale for adaptation and coping mechanisms
- Effective targeting for management of resources


THE WHEATBELT, WESTERN AUSTRALIA

- Diverse population
- Rich in environmental resources
 - Minerals & Petroleum
 - Agriculture
- Drive for economic development
- Limited consideration for environmental sustainability
- Push for intensive energy generation and food production
- Freshwater resource scarcity

WATER SYSTEM VULNERABILITY

"Water supply is fundamental for supporting and sustaining community and industry development in the Wheatbelt." (WDC, 2013)

→ Assessment of water vulnerability required to build future preparedness

Boruff et al. (in prep)

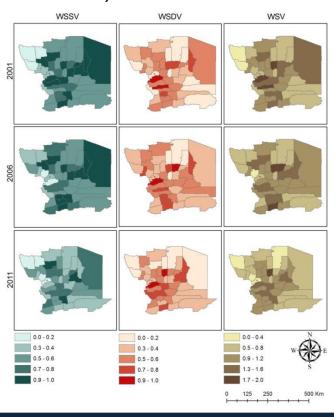
CALCULATING VULNERABILITY

Water System Vulnerability (WSV) = WSSV + WSDV

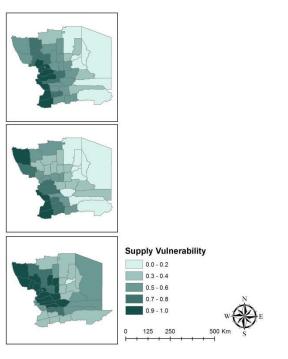
Supply Vulnerability (WSSV)

- Precipitation characteristics
- Sustainability of aquifer(s)
- Density and capacity of scheme

Demand Vulnerability (WSDV)


- Evapotranspiration
- Temperature
- Livestock density
- Land under cropping
- Population density
- Employment in water-dependent sectors
- Distance to scheme

Stepwise regression used to identify dominant variables on system vulnerability



WATER SYSTEM VULNERABILITY

Preliminary results

e.g. Reliability Capacity

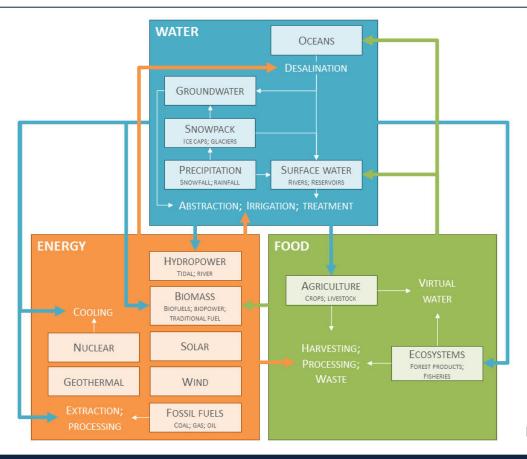
Boruff et al. (in prep)

DOMINANT VULNERABILITY INDICATORS

Preliminary results

2001	2006	2011
Capacity reliability	Capacity reliability	Capacity reliability
Local water abstraction	Local water abstraction	Local water abstraction
Supply and delivery capacity	Supply and delivery capacity	Population demand
Livestock demand	Livestock demand	Supply and delivery capacity
Crop demand	Industrial demand	Crop demand
Population demand	Population demand	Livestock demand
Industrial demand	Crop demand	Industrial demand

Boruff et al. (in prep)



WSV INDEX IMPLICATIONS

- Informative planning for Wheatbelt Development Commission
 - Wheatbelt water strategy (action required)
 - Targeting development of technology to reduce demand vulnerability (e.g. scheme expansion) and supply vulnerability (e.g. desalination capacity)
- Can incorporate future pressures and growth rates to reflect projected water vulnerability for region
- Transferable index-building process to apply quantitative system vulnerability concept to other regions
- Potential expansion to consider energy and food systems
 - Better manage trade-offs and synergies between nexus linkages

WATER-ENERGY-FOOD SYSTEM VULNERABILITY

- Determine
 vulnerabilities within
 the energy and food
 systems in Wheatbelt
- Deliver a nexus-based approach for assessing system vulnerability to promote sustainable resource practice

Biggs et al. (in review)

REFERENCES

- Biggs EM, Bruce E, Boruff B, Duncan JMA, Duce S, Haworth BJ, Horsley J, Curnow J, Neef A, McNeill K, Pauli N, Van Ogtrop F, Imanari Y, in review. Sustainable development and the water-energy-food nexus: a perspective on livelihoods. *Environmental Science and Policy*
- Boruff B, Biggs EM, Pauli N, Clifton J, Callow N, in preparation. Changing water vulnerability in Western Australia's Wheatbelt region. *Applied Geography*
- Cohen A, Sullivan CA, 2010. Water and poverty in rural China: Developing an instrument to assess the multiple dimensions of water and poverty. *Ecological Economics* 69: 999-1009
- Hoff H, 2011. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute, Stockholm
- Sullivan CA, 2011. Quantifying water vulnerability: a multi-dimensional approach. *Stoch Environ Res Risk Assess* 25: 627–640
- Sullivan CA, Cohen A, Faures JM, Santini G, 2008. The rural water livelihoods index. FAO Working Paper, Food and Agricultural Organisation, Rome
- Sullivan CA, Meigh J, 2005. Targeting attention on local vulnerabilities using an integrated index approach: the example of the climate vulnerability index. *Water science & technology* 51: 69-78

Follow updates on Twitter @EllieMBiggs

Acknowledgements This project was funded by the World Universities Network. Thanks go to Yinghui Cathy Cao, Department of Water, Water Cooperation and Wheatbelt Natural Resources Management