The water footprint of products, companies and consumers: what is sustainable, efficient and fair?

Arjen Hoekstra www.ayhoekstra.nl

The average water footprint of a UK consumer

3450 litre/day

Global water footprint of UK consumption

Source: Mekonnen & Hoekstra (2011) National Water Footprint Accounts, UNESCO-IHE.

Cotton from the Aral Sea Basin, Central Asia

Animal feed from California, USA

Food Grows Where Water Flows

Top-6 water consumers California:

- 1. animal feed
- 2. almonds & walnuts
- 3. residential areas
- 4. rice
- 5. grapes
- 6. cotton

The water footprint of humanity: not sustainable

Blue water scarcity = blue WF / maximum sustainable blue WF

We need water footprint caps per river basin (specified per month)

Source: Mekonnen & Hoekstra (2015)

Global blue water footprint of UK consumption

Source: Hoekstra & Mekonnen (2015)

41% of UK's global blue WF is unsustainable (located in places where blue WF > max. sustainable blue WF)

51% of the unsustainable part of UK's blue WF is located in six countries:

- 1. Spain (15%)
- 2. USA (11%)
- 3. Pakistan (8%)
- 4. India (7%)
- 5. South Africa (6%)
- 6. Iran (5%)

The water footprint of humanity: not efficient

Spatial differences in the consumptive water footprint of barley

Source: Mekonnen & Hoekstra (2014)

We need water footprint benchmarks per product

Worldwide reduction of consumptive water footprints of crops to benchmark levels, set by the best 25% of global production, would result in a global water saving of 40%.

Global average water footprint

		litre/kcal
	starchy roots	0.5
>	cereals	0.5
	sugar crops	0.7
	pulses	1.1
	vegetables	1.3
	fruits	2.1
	pork	2.2
	poultry	3.0
>	beef	10.2

Source: Mekonnen & Hoekstra (2012) A global assessment of the water footprint of farm animal products, *Ecosystems*

The WF of meat & dairy is 30% of the overall WF of our food, in industrialized countries generally 40%

Stop showering = water saving of 50 litre/day

Stop eating meat = water saving of 800 litre/day

The two separate worlds of water and energy

► The water sector is becoming more energy-intensive

- desalination
- pumping deeper groundwater
- large-scale (inter-basin) water transfers
- ► The energy sector is becoming more water-intensive
 - biomass
 - shale oil & gas

The water efficiency of biofuels

Source: Mekonnen & Hoekstra (2011)

The water efficiency of electricity

Source: Mekonnen, Gerbens-Leenes & Hoekstra (2015)

The water footprint of humanity: not fairly distributed

UNIVERSITY OF TWENTE.

Source: Hoekstra & Mekonnen (2012) The Water Footprint of Humanity, PNAS

The water footprint of humanity: inter-regional dependencies

Example European Union

Source: Hoekstra & Mekonnen (2012) The Water Footprint of Humanity, PNAS

- ► water footprint caps by river basin
- water footprint benchmarks by product
 - ► best available technology and practice
 - ► water disclosure
 - ► product transparency
- ► fair water footprint shares by consumer
 - national water footprint reduction targets
 - ► Kyoto protocol for water?
- ► greater levels of (water-food-energy) self-sufficiency

The need for contraction and convergence

twitter @AYHoekstra www.ayhoekstra.nl