Connecting the Dots: A Unifying Theory for Water Engineering

Professor Vijay P. Singh, Ph.D., D.Sc., D. Eng. (Hon.), Ph.D. (Hon.), D.Sc. (Hon.), P.E., P.H., Hon. D. WRE, Academician (GFA)

University Distinguished Professor Caroline & William N. Lehrer Distinguished Chair in Water Engineering Department of Biological and Agricultural Engineering Zachry Department of Civil Engineering

Water Engineering

- Water Systems: Drainage, flood control, storage (dams), water supply, hydropower, diversion, river training, etc.
- Planning, design, operation and management of water systems; policy making; environmental assessment; impacts on society
- Integration of
 - Hydrologic engineering
 - Hydraulic engineering
 - Environmental engineering
 - Ecosystems engineering
 - Water resources engineering

Hydrologic Engineering

- Key Questions
 - What is the volume of runoff for a given rainfall?
 - What is the value of peak runoff (discharge) for a given rainfall?
 - What is the runoff hydrograph for a given rainfall?
 - What is the frequency or return period of a given runoff peak or flood?
 - How can streamflow be simulated for a given time?
 - How can streamflow be forecasted ahead of time?

- Runoff volume
 - Rainwater harvesting structures design, recharge basins, wetland design, etc.
- Runoff peak
 - Urban drainage design, arterial airfields, parking lots, etc.
- Runoff hydrograph
 - Hydrologic design, erosion and water quality determination, impact studies, etc.
- Runoff peak or flood frequency
 - Hydrologic design, climate change impact, assessment, flood mitigation measures, etc.
- Streamflow simulation
 - Reservoir operation, policy formulation, etc.
- Streamflow forecasting
 - Flood management and evacuation measures, etc.

Hydrologic Engineering Landscape

Methods of Solution

- Volume of runoff for a given rainfall
 - Empirical: Regression
 - SCS-CN method
 - Infiltration-based technique
 - Watershed simulation
- Peak runoff for a given rainfall
 - Rational method
 - Standardized peak discharge relation
 - Unit hydrograph
 - Physically based
- Runoff hydrograph for a given rainfall
 - Unit hydrograph
 - Kinematic wave and diffusion wave theories
 - Watershed simulation

Hydrologic Engineering Landscape (Contd.)

- Methods of Solution
 - Runoff peak or flood frequency
 - Empirical
 - Physically based
 - Streamflow simulation
 - Time series analysis (e.g., AR, ARMA, ARIMA, disaggregation, etc.)
 - Nonparametric models
 - Streamflow forecasting
 - Time series analysis (e.g. spectral analysis, etc.)
 - Nonparametric models

Hydraulic Engineering

- Key Questions
 - What is the velocity distribution in open channel flow?
 - What is the concentration of sediment in open channel flow?
 - What is the sediment discharge of a river?
 - What is the hydraulic geometry of a river?
 - What is the optimal canal design?

- Velocity Distribution
 - Flow modeling
 - Scour modeling
 - Bed profiles
- Sediment Concentration and Sediment Discharge
 - Environmental pollution
 - Bed forms
 - Sedimentation
- Hydraulic Geometry
 - River training
 - Restoration
- Optimal Canal Design
 - Irrigation
 - Drainage

Hydraulic Engineering Landscape

Methods of Solution

- Velocity Distribution
 - Empirical
 - Quasi-physical
 - Probabilistic

Sediment Concentration and Sediment Discharge

- Empirical
- Quasi-physical
- Probabilistic
- Hydraulic Geometry
 - Empirical
 - Theoretical
- Optimal Canal Design
 - Empirical
 - Quasi-theoretical

Water Supply Engineering

- Key Questions
 - How to design a water supply system?
 - What is the reliability of the water distribution system?
 - What are environmental impacts?

Water Supply Engineering Landscape

- Methods of Solution
 - Design of a Water Supply System
 - Hydraulic
 - Optimization: deterministic and stochastic
 - Reliability of Water Distribution System
 - Hydraulic
 - Optimization
 - Stochastic

Environmental Resources

- Key Questions
 - What is environmental flow?
 - What is eco-index?

Environmental Resources Landscape

- Methods of Solution
 - Environmental Flow
 - Hydrologic indices
 - Indicators of hydrologic alterations
 - Eco-index
 - Hydrologic
 - Probabilistic

Development of a Unifying Theory

- Entropy Theory
 - Entropy: a measure of disorder, chaos, uncertainty, surprise, or information
 - Information reduces uncertainty; more information means less uncertainty
 - Uncertainty increases need for information; more uncertainty means more information is needed.

Entropy, Information and Uncertainty

- Information is gained only if there is uncertainty about an event.
- Uncertainty suggests that the event may take on different values.
- The value that occurs with a higher probability conveys less information and vice versa.
- Shannon (1948) argued that entropy is the expected value of the probabilities of alternative values that an event may take on.
- The information gained is indirectly measured as the amount of reduction of uncertainty or of entropy.

Types of Entropy

Real Domain

- Shannon Entropy
- Tsallis Entropy
- Exponential Entropy
- Kapur Entropy
- Renyi Entropy
- Cross or relative Entropy
- Others
- Frequency Domain
 - Burg Entropy
 - Configurational Entropy
 - Relative Entropy

Development of Entropy Theory

- Elements of Entropy Theory
 - Definition of Entropy
 - Principle of Maximum Entropy (POME)
 - Theorem of Concentration
 - Principle of Minimum Cross-Entropy (POMCE)

*Singh, V.P. (2013). Entropy Theory and its Application in Environmental and Water Engineering. 642 pp., John Wiley.
* Singh, V.P. (2014). Entropy Theory in Hydraulic Engineering. 785 pp., ASCE Press, Reston, Virginia.
* Singh, V.P. (2015). Entropy Theory in Hydrologic Science and Engineering.

824 pp., McGraw-Hill Education, New York.

Methodology for Application of Entropy Theory

- Define entropy.
- Specify constraints.
- Maximize entropy using POME.
- Use the method of Lagrange Multipliers.
- Determine Lagrange multipliers in terms of constraints.
- Probability distribution in terms of Constraints.
- Determine the maximum Shannon Entropy.
- Derive the desired result.

Conclusions

- Entropy theory provides a probabilistic description and makes a statement on uncertainty. This has important implications for sampling, model reliability, and policy making.
- The use of entropy theory leads to explicit relations with meaningful science.
- There are two fundamental issues that need to be addressed: (1) Specification of information, and (2) hypothesis on flux-concentration relation.

THANK YOU

